Architectural Strategies for the optimization of Physics-Informed Neural Networks

5 Feb 2024  ·  Hemanth Saratchandran, Shin-Fang Chng, Simon Lucey ·

Physics-informed neural networks (PINNs) offer a promising avenue for tackling both forward and inverse problems in partial differential equations (PDEs) by incorporating deep learning with fundamental physics principles. Despite their remarkable empirical success, PINNs have garnered a reputation for their notorious training challenges across a spectrum of PDEs. In this work, we delve into the intricacies of PINN optimization from a neural architecture perspective. Leveraging the Neural Tangent Kernel (NTK), our study reveals that Gaussian activations surpass several alternate activations when it comes to effectively training PINNs. Building on insights from numerical linear algebra, we introduce a preconditioned neural architecture, showcasing how such tailored architectures enhance the optimization process. Our theoretical findings are substantiated through rigorous validation against established PDEs within the scientific literature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here