We present VideoCLIP, a contrastive approach to pre-train a unified model for zero-shot video and text understanding, without using any labels on downstream tasks.
The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing.
Easy-to-use and powerful NLP library with Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including Neural Search, Question Answering, Information Extraction and Sentiment Analysis end-to-end system.
Our key insight is to take advantage of the powerful vision-language model CLIP for supervising neural human generation, in terms of 3D geometry, texture and animation.
Specifically, BEVerse first performs shared feature extraction and lifting to generate 4D BEV representations from multi-timestamp and multi-view images.
We evaluate our two-stream approach for inpainting tasks, where experiments show that it improves both the propagation of features within a single frame as required for image inpainting, as well as their propagation from keyframes to target frames.
Optical flow, which captures motion information across frames, is exploited in recent video inpainting methods through propagating pixels along its trajectories.
Ranked #1 on
Video Inpainting
on YouTube-VOS 2018 val
Text-to-image generation has traditionally focused on finding better modeling assumptions for training on a fixed dataset.
Ranked #5 on
Zero-Shot Text-to-Image Generation
on COCO
We present the Berkeley Crossword Solver, a state-of-the-art approach for automatically solving crossword puzzles.
We present an efficient method for joint optimization of topology, materials and lighting from multi-view image observations.