Search Results for author: Alessandra Buonanno

Found 6 papers, 2 papers with code

Adapting to noise distribution shifts in flow-based gravitational-wave inference

no code implementations16 Nov 2022 Jonas Wildberger, Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers $\unicode{x2013}$ producing results of comparable accuracy.

Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference

1 code implementation11 Oct 2022 Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

This shows a median sample efficiency of $\approx 10\%$ (two orders-of-magnitude better than standard samplers) as well as a ten-fold reduction in the statistical uncertainty in the log evidence.

Real-time gravitational-wave science with neural posterior estimation

1 code implementation23 Jun 2021 Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.

An improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

no code implementations11 Nov 2016 Alejandro Bohé, Lijing Shao, Andrea Taracchini, Alessandra Buonanno, Stanislav Babak, Ian W. Harry, Ian Hinder, Serguei Ossokine, Michael Pürrer, Vivien Raymond, Tony Chu, Heather Fong, Prayush Kumar, Harald P. Pfeiffer, Michael Boyle, Daniel A. Hemberger, Lawrence E. Kidder, Geoffrey Lovelace, Mark A. Scheel, Béla Szilágyi

After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness --- at design Advanced-LIGO sensitivity --- above $99\%$ against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time.

General Relativity and Quantum Cosmology

Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms

no code implementations7 Apr 2014 Andrea Taracchini, Alessandra Buonanno, Gaurav Khanna, Scott A. Hughes

We study the large-spin regime, and find a great simplicity in the merger waveforms, thanks to the extremely circular character of the plunging orbits.

General Relativity and Quantum Cosmology

Effective-one-body model for black-hole binaries with generic mass ratios and spins

no code implementations11 Nov 2013 Andrea Taracchini, Alessandra Buonanno, Yi Pan, Tanja Hinderer, Michael Boyle, Daniel A. Hemberger, Lawrence E. Kidder, Geoffrey Lovelace, Abdul H. Mroue, Harald P. Pfeiffer, Mark A. Scheel, Bela Szilagyi, Nicholas W. Taylor, Anil Zenginoglu

Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal.

General Relativity and Quantum Cosmology

Cannot find the paper you are looking for? You can Submit a new open access paper.