Search Results for author: Audrunas Gruslys

Found 9 papers, 6 papers with code

Fast computation of Nash Equilibria in Imperfect Information Games

no code implementations ICML 2020 Remi Munos, Julien Perolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot, Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, Mohammad Gheshlaghi Azar, Edward Lockhart, Karl Tuyls

We introduce and analyze a class of algorithms, called Mirror Ascent against an Improved Opponent (MAIO), for computing Nash equilibria in two-player zero-sum games, both in normal form and in sequential imperfect information form.

Navigating the Landscape of Multiplayer Games

no code implementations4 May 2020 Shayegan Omidshafiei, Karl Tuyls, Wojciech M. Czarnecki, Francisco C. Santos, Mark Rowland, Jerome Connor, Daniel Hennes, Paul Muller, Julien Perolat, Bart De Vylder, Audrunas Gruslys, Remi Munos

Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence.

A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning

1 code implementation NeurIPS 2017 Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David Silver, Thore Graepel

To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL).

reinforcement-learning Reinforcement Learning (RL)

The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning

no code implementations ICLR 2018 Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Bellemare, Remi Munos

Our first contribution is a new policy evaluation algorithm called Distributional Retrace, which brings multi-step off-policy updates to the distributional reinforcement learning setting.

Atari Games Distributional Reinforcement Learning +1

Deep Q-learning from Demonstrations

5 code implementations12 Apr 2017 Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys

We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism.

Imitation Learning Q-Learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.