Search Results for author: Can Firtina

Found 14 papers, 13 papers with code

MetaTrinity: Enabling Fast Metagenomic Classification via Seed Counting and Edit Distance Approximation

3 code implementations3 Nov 2023 Arvid E. Gollwitzer, Mohammed Alser, Joel Bergtholdt, Joel Lindegger, Maximilian-David Rumpf, Can Firtina, Serghei Mangul, Onur Mutlu

This dual comparison positions MetaTrinity as a broadly applicable solution for metagenomic classification, combining advantages of both ends of the spectrum: speed and accuracy.

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals using a Hash-based Seeding Mechanism

1 code implementation11 Sep 2023 Can Firtina, Melina Soysal, Joël Lindegger, Onur Mutlu

Summary: Raw nanopore signals can be analyzed while they are being generated, a process known as real-time analysis.

RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

1 code implementation22 Jan 2023 Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, Onur Mutlu

RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value.

Quantization

TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

1 code implementation9 Dec 2022 Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joël Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, Onur Mutlu

However, for many applications, the majority of reads do no match the reference genome of interest (i. e., target reference) and thus are discarded in later steps in the genomics pipeline, wasting the basecalling computation.

BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches in Genome Analysis

1 code implementation16 Dec 2021 Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can Alkan, Onur Mutlu

We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seed matches.

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

2 code implementations16 Sep 2020 Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Unfortunately, it is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data.

Hardware Architecture Genomics

AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes

1 code implementation18 Dec 2019 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu

There are several tools that attempt to accelerate the process of updating a read data set from one reference to another (i. e., remapping).

Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate Assembly Polishing Algorithm

1 code implementation12 Feb 2019 Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument Cicek, Can Alkan, Onur Mutlu

Our experiments with real read sets demonstrate that Apollo is the only algorithm that 1) uses reads from any sequencing technology within a single run and 2) scales well to polish large assemblies without splitting the assembly into multiple parts.

Cannot find the paper you are looking for? You can Submit a new open access paper.