Search Results for author: Cheng-Hao Liu

Found 8 papers, 4 papers with code

Iterated Denoising Energy Matching for Sampling from Boltzmann Densities

1 code implementation9 Feb 2024 Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong

Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-body systems, is a foundational problem in science.

Denoising Efficient Exploration

Towards equilibrium molecular conformation generation with GFlowNets

no code implementations20 Oct 2023 Alexandra Volokhova, Michał Koziarski, Alex Hernández-García, Cheng-Hao Liu, Santiago Miret, Pablo Lemos, Luca Thiede, Zichao Yan, Alán Aspuru-Guzik, Yoshua Bengio

Sampling diverse, thermodynamically feasible molecular conformations plays a crucial role in predicting properties of a molecule.

Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization

2 code implementations4 Oct 2023 Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron Courville, Yoshua Bengio

We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics.

Thompson sampling for improved exploration in GFlowNets

no code implementations30 Jun 2023 Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio

Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.

Active Learning Decision Making +3

Multi-Fidelity Active Learning with GFlowNets

2 code implementations20 Jun 2023 Alex Hernandez-Garcia, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, Yoshua Bengio

For example, in scientific discovery, we are often faced with the problem of exploring very large, high-dimensional spaces, where querying a high fidelity, black-box objective function is very expensive.

Active Learning

GFlowNets for AI-Driven Scientific Discovery

no code implementations1 Feb 2023 Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, Yoshua Bengio

However, in order to truly leverage large-scale data sets and high-throughput experimental setups, machine learning methods will need to be further improved and better integrated in the scientific discovery pipeline.

Efficient Exploration Experimental Design

RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De Novo Drug Design

no code implementations25 Nov 2020 Cheng-Hao Liu, Maksym Korablyov, Stanisław Jastrzębski, Paweł Włodarczyk-Pruszyński, Yoshua Bengio, Marwin H. S. Segler

A natural idea to mitigate this problem is to bias the search process towards more easily synthesizable molecules using a proxy for synthetic accessibility.

Retrosynthesis

Cannot find the paper you are looking for? You can Submit a new open access paper.