Search Results for author: E. Knill

Found 12 papers, 3 papers with code

Challenging local realism with human choices

1 code implementation11 May 2018 The BIG Bell Test Collaboration, C. Abellán, A. Acín, A. Alarcón, O. Alibart, C. K. Andersen, F. Andreoli, A. Beckert, F. A. Beduini, A. Bendersky, M. Bentivegna, P. Bierhorst, D. Burchardt, A. Cabello, J. Cariñe, S. Carrasco, G. Carvacho, D. Cavalcanti, R. Chaves, J. Cortés-Vega, A. Cuevas, A. Delgado, H. de Riedmatten, C. Eichler, P. Farrera, J. Fuenzalida, M. García-Matos, R. Garthoff, S. Gasparinetti, T. Gerrits, F. Ghafari Jouneghani, S. Glancy, E. S. Gómez, P. González, J. -Y. Guan, J. Handsteiner, J. Heinsoo, G. Heinze, A. Hirschmann, O. Jiménez, F. Kaiser, E. Knill, L. T. Knoll, S. Krinner, P. Kurpiers, M. A. Larotonda, J. -Å. Larsson, A. Lenhard, H. Li, M. -H. Li, G. Lima, B. Liu, Y. Liu, I. H. López Grande, T. Lunghi, X. Ma, O. S. Magaña-Loaiza, P. Magnard, A. Magnoni, M. Martí-Prieto, D. Martínez, P. Mataloni, A. Mattar, M. Mazzera, R. P. Mirin, M. W. Mitchell, S. Nam, M. Oppliger, J. -W. Pan, R. B. Patel, G. J. Pryde, D. Rauch, K. Redeker, D. Rieländer, M. Ringbauer, T. Roberson, W. Rosenfeld, Y. Salathé, L. Santodonato, G. Sauder, T. Scheidl, C. T. Schmiegelow, F. Sciarrino, A. Seri, L. K. Shalm, S. -C. Shi, S. Slussarenko, M. J. Stevens, S. Tanzilli, F. Toledo, J. Tura, R. Ursin, P. Vergyris, V. B. Verma, T. Walter, A. Wallraff, Z. Wang, H. Weinfurter, M. M. Weston, A. G. White, C. Wu, G. B. Xavier, L. You, X. Yuan, A. Zeilinger, Q. Zhang, W. Zhang, J. Zhong

A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings.

Quantum Physics

Joint Quantum State and Measurement Tomography with Incomplete Measurements

1 code implementation22 Mar 2018 Adam C. Keith, Charles H. Baldwin, Scott Glancy, E. Knill

For these cases, we show how one may identify a set of density matrices compatible with the measurements and use a semi-definite program to place bounds on the state's expectation values.

Quantum Physics

High-Fidelity Universal Gate Set for $^9$Be$^+$ Ion Qubits

no code implementations31 Mar 2016 J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D. J. Wineland

We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in $^{9}$Be$^+$ ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with error per gate of $3. 8(1)\times 10^{-5}$.

Quantum Physics

Diluted maximum-likelihood algorithm for quantum tomography

1 code implementation23 Nov 2006 Jaroslav Rehacek, Zdenek Hradil, E. Knill, A. I. Lvovsky

We propose a refined iterative likelihood-maximization algorithm for reconstructing a quantum state from a set of tomographic measurements.

Quantum Physics

Fault-Tolerant Postselected Quantum Computation: Threshold Analysis

no code implementations19 Apr 2004 E. Knill

The schemes for fault-tolerant postselected quantum computation given in [Knill, Fault-Tolerant Postselected Quantum Computation: Schemes, http://arxiv. org/abs/quant-ph/0402171] are analyzed to determine their error-tolerance.

Quantum Physics

Fault-Tolerant Postselected Quantum Computation: Schemes

no code implementations23 Feb 2004 E. Knill

Conditionally on detecting no errors, it is expected that the encoded computation can be made to be arbitrarily accurate.

Quantum Physics

Introduction to Quantum Information Processing

no code implementations30 Jul 2002 E. Knill, R. Laflamme, H. Barnum, D. Dalvit, J. Dziarmaga, J. Gubernatis, L. Gurvits, G. Ortiz, L. Viola, W. H. Zurek

As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developing new applications of quantum information and on physically realizing controllable quantum devices.

Quantum Physics

Introduction to Quantum Error Correction

no code implementations30 Jul 2002 E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, W. H. Zurek

In this introduction we motivate and explain the ``decoding'' and ``subsystems'' view of quantum error correction.

Quantum Physics

Simulating Physical Phenomena by Quantum Networks

no code implementations31 Aug 2001 R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, R. Laflamme

Physical systems, characterized by an ensemble of interacting elementary constituents, can be represented and studied by different algebras of observables or operators.

Quantum Physics cond-mat

On the Power of One Bit of Quantum Information

no code implementations12 Feb 1998 E. Knill, R. Laflamme

In standard quantum computation, the initial state is pure and the answer is determined by making a measurement of some of the bits in the computational basis.

Quantum Physics

Experimental Quantum Error Correction

no code implementations6 Feb 1998 D. G. Cory, W. Mass, M. Price, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, S. S. Somaroo

Quantum error correction is required to compensate for the fragility of the state of a quantum computer.

Quantum Physics

Threshold Accuracy for Quantum Computation

no code implementations8 Oct 1996 E. Knill, R. Laflamme, W. Zurek

We have previously (quant-ph/9608012) shown that for quantum memories and quantum communication, a state can be transmitted over arbitrary distances with error $\epsilon$ provided each gate has error at most $c\epsilon$.

Quantum Physics

Cannot find the paper you are looking for? You can Submit a new open access paper.