Search Results for author: Erik Daxberger

Found 12 papers, 3 papers with code

Mobile V-MoEs: Scaling Down Vision Transformers via Sparse Mixture-of-Experts

no code implementations8 Sep 2023 Erik Daxberger, Floris Weers, BoWen Zhang, Tom Gunter, Ruoming Pang, Marcin Eichner, Michael Emmersberger, Yinfei Yang, Alexander Toshev, Xianzhi Du

We empirically show that our sparse Mobile Vision MoEs (V-MoEs) can achieve a better trade-off between performance and efficiency than the corresponding dense ViTs.

Adapting the Linearised Laplace Model Evidence for Modern Deep Learning

no code implementations17 Jun 2022 Javier Antorán, David Janz, James Urquhart Allingham, Erik Daxberger, Riccardo Barbano, Eric Nalisnick, José Miguel Hernández-Lobato

The linearised Laplace method for estimating model uncertainty has received renewed attention in the Bayesian deep learning community.

Model Selection

Linearised Laplace Inference in Networks with Normalisation Layers and the Neural g-Prior

no code implementations pproximateinference AABI Symposium 2022 Javier Antoran, James Urquhart Allingham, David Janz, Erik Daxberger, Eric Nalisnick, José Miguel Hernández-Lobato

We show that for neural networks (NN) with normalisation layers, i. e. batch norm, layer norm, or group norm, the Laplace model evidence does not approximate the volume of a posterior mode and is thus unsuitable for model selection.

Image Classification Model Selection +1

Laplace Redux -- Effortless Bayesian Deep Learning

3 code implementations NeurIPS 2021 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, Philipp Hennig

Bayesian formulations of deep learning have been shown to have compelling theoretical properties and offer practical functional benefits, such as improved predictive uncertainty quantification and model selection.

Misconceptions Model Selection +1

Laplace Redux - Effortless Bayesian Deep Learning

no code implementations NeurIPS 2021 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, Philipp Hennig

Bayesian formulations of deep learning have been shown to have compelling theoretical properties and offer practical functional benefits, such as improved predictive uncertainty quantification and model selection.

Misconceptions Model Selection +1

Bayesian Deep Learning via Subnetwork Inference

1 code implementation28 Oct 2020 Erik Daxberger, Eric Nalisnick, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato

In particular, we implement subnetwork linearized Laplace as a simple, scalable Bayesian deep learning method: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork using the linearized Laplace approximation.

Bayesian Inference

Expressive yet Tractable Bayesian Deep Learning via Subnetwork Inference

no code implementations pproximateinference AABI Symposium 2021 Erik Daxberger, Eric Nalisnick, James Allingham, Javier Antoran, José Miguel Hernández-Lobato

In particular, we develop a practical and scalable Bayesian deep learning method that first trains a point estimate, and then infers a full covariance Gaussian posterior approximation over a subnetwork.

Bayesian Inference

Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining

1 code implementation NeurIPS 2020 Austin Tripp, Erik Daxberger, José Miguel Hernández-Lobato

We introduce an improved method for efficient black-box optimization, which performs the optimization in the low-dimensional, continuous latent manifold learned by a deep generative model.

Molecular Graph Generation

Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection

no code implementations11 Dec 2019 Erik Daxberger, José Miguel Hernández-Lobato

Despite their successes, deep neural networks may make unreliable predictions when faced with test data drawn from a distribution different to that of the training data, constituting a major problem for AI safety.

Out-of-Distribution Detection

Mixed-Variable Bayesian Optimization

no code implementations2 Jul 2019 Erik Daxberger, Anastasia Makarova, Matteo Turchetta, Andreas Krause

However, few methods exist for mixed-variable domains and none of them can handle discrete constraints that arise in many real-world applications.

Bayesian Optimization Thompson Sampling

Embedding Models for Episodic Knowledge Graphs

no code implementations30 Jun 2018 Yunpu Ma, Volker Tresp, Erik Daxberger

In this paper, we extend models for static knowledge graphs to temporal knowledge graphs.

Knowledge Graph Embeddings Knowledge Graphs

Cannot find the paper you are looking for? You can Submit a new open access paper.