Search Results for author: Jesse Farebrother

Found 7 papers, 4 papers with code

Stop Regressing: Training Value Functions via Classification for Scalable Deep RL

no code implementations6 Mar 2024 Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, Rishabh Agarwal

Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions.

Atari Games regression +1

Mixtures of Experts Unlock Parameter Scaling for Deep RL

no code implementations13 Feb 2024 Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster, Gintare Karolina Dziugaite, Doina Precup, Pablo Samuel Castro

The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance scales proportionally to its size.

reinforcement-learning Self-Supervised Learning

A Distributional Analogue to the Successor Representation

1 code implementation13 Feb 2024 Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney, Marc G. Bellemare, Mark Rowland

This paper contributes a new approach for distributional reinforcement learning which elucidates a clean separation of transition structure and reward in the learning process.

Distributional Reinforcement Learning Model-based Reinforcement Learning +1

Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy

1 code implementation21 Nov 2023 Max Schwarzer, Jesse Farebrother, Joshua Greaves, Ekin Dogus Cubuk, Rishabh Agarwal, Aaron Courville, Marc G. Bellemare, Sergei Kalinin, Igor Mordatch, Pablo Samuel Castro, Kevin M. Roccapriore

We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimulated by the electron beam of a scanning transmission electron microscope (STEM).

Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks

1 code implementation25 Apr 2023 Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel Castro, Marc G. Bellemare

Combined with a suitable off-policy learning rule, the result is a representation learning algorithm that can be understood as extending Mahadevan & Maggioni (2007)'s proto-value functions to deep reinforcement learning -- accordingly, we call the resulting object proto-value networks.

Atari Games reinforcement-learning +1

A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces

no code implementations8 Dec 2022 Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian Pedregosa, Rishabh Agarwal, Marc G. Bellemare

In this paper, we derive an algorithm that learns a principal subspace from sample entries, can be applied when the approximate subspace is represented by a neural network, and hence can be scaled to datasets with an effectively infinite number of rows and columns.

Image Compression reinforcement-learning +1

Generalization and Regularization in DQN

1 code implementation29 Sep 2018 Jesse Farebrother, Marlos C. Machado, Michael Bowling

Deep reinforcement learning algorithms have shown an impressive ability to learn complex control policies in high-dimensional tasks.

Atari Games Benchmarking +2

Cannot find the paper you are looking for? You can Submit a new open access paper.