Search Results for author: Jesus Tordesillas

Found 7 papers, 4 papers with code

RAYEN: Imposition of Hard Convex Constraints on Neural Networks

1 code implementation17 Jul 2023 Jesus Tordesillas, Jonathan P. How, Marco Hutter

This paper presents RAYEN, a framework to impose hard convex constraints on the output or latent variable of a neural network.

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

no code implementations21 Mar 2021 Ali Agha, Kyohei Otsu, Benjamin Morrell, David D. Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Fadhil Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry, Michael Wolf, Andrea Tagliabue, Tiago Stegun Vaquero, Matteo Palieri, Scott Tepsuporn, Yun Chang, Arash Kalantari, Fernando Chavez, Brett Lopez, Nobuhiro Funabiki, Gregory Miles, Thomas Touma, Alessandro Buscicchio, Jesus Tordesillas, Nikhilesh Alatur, Jeremy Nash, William Walsh, Sunggoo Jung, Hanseob Lee, Christoforos Kanellakis, John Mayo, Scott Harper, Marcel Kaufmann, Anushri Dixit, Gustavo Correa, Carlyn Lee, Jay Gao, Gene Merewether, Jairo Maldonado-Contreras, Gautam Salhotra, Maira Saboia Da Silva, Benjamin Ramtoula, Yuki Kubo, Seyed Fakoorian, Alexander Hatteland, Taeyeon Kim, Tara Bartlett, Alex Stephens, Leon Kim, Chuck Bergh, Eric Heiden, Thomas Lew, Abhishek Cauligi, Tristan Heywood, Andrew Kramer, Henry A. Leopold, Chris Choi, Shreyansh Daftry, Olivier Toupet, Inhwan Wee, Abhishek Thakur, Micah Feras, Giovanni Beltrame, George Nikolakopoulos, David Shim, Luca Carlone, Joel Burdick

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge.

Decision Making Motion Planning

Autonomous Off-road Navigation over Extreme Terrains with Perceptually-challenging Conditions

no code implementations26 Jan 2021 Rohan Thakker, Nikhilesh Alatur, David D. Fan, Jesus Tordesillas, Michael Paton, Kyohei Otsu, Olivier Toupet, Ali-akbar Agha-mohammadi

We propose a framework for resilient autonomous navigation in perceptually challenging unknown environments with mobility-stressing elements such as uneven surfaces with rocks and boulders, steep slopes, negative obstacles like cliffs and holes, and narrow passages.

Autonomous Navigation

FASTER: Fast and Safe Trajectory Planner for Navigation in Unknown Environments

2 code implementations9 Jan 2020 Jesus Tordesillas, Brett T. Lopez, Michael Everett, Jonathan P. How

The standard approaches that ensure safety by enforcing a "stop" condition in the free-known space can severely limit the speed of the vehicle, especially in situations where much of the world is unknown.

Motion Planning Trajectory Planning

FaSTraP: Fast and Safe Trajectory Planner for Flights in Unknown Environments

3 code implementations8 Mar 2019 Jesus Tordesillas, Brett T. Lopez, Jonathan P. How

The desire of maintaining computational tractability typically leads to optimization problems that do not include the obstacles (collision checks are done on the solutions) or to formulations that use a convex decomposition of the free space and then impose an ad hoc allocation of each interval of the trajectory in a specific polyhedron.

Robotics

Real-Time Planning with Multi-Fidelity Models for Agile Flights in Unknown Environments

2 code implementations2 Oct 2018 Jesus Tordesillas, Brett T. Lopez, John Carter, John Ware, Jonathan P. How

However, in unknown environments, this approach can lead to erratic or unstable behavior due to the interaction between the global planner, whose solution is changing constantly, and the local planner; a consequence of not capturing higher-order dynamics in the global plan.

Robotics

Cannot find the paper you are looking for? You can Submit a new open access paper.