Search Results for author: Kanika Madan

Found 7 papers, 1 papers with code

Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems

no code implementations5 Oct 2023 Trang Nguyen, Alexander Tong, Kanika Madan, Yoshua Bengio, Dianbo Liu

Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular processes.

Causal Discovery Causal Inference

Pre-Training and Fine-Tuning Generative Flow Networks

no code implementations5 Oct 2023 Ling Pan, Moksh Jain, Kanika Madan, Yoshua Bengio

However, as they are typically trained from a given extrinsic reward function, it remains an important open challenge about how to leverage the power of pre-training and train GFlowNets in an unsupervised fashion for efficient adaptation to downstream tasks.

Unsupervised Pre-training

Thompson sampling for improved exploration in GFlowNets

no code implementations30 Jun 2023 Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio

Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.

Active Learning Decision Making +3

Learning GFlowNets from partial episodes for improved convergence and stability

3 code implementations26 Sep 2022 Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin

Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized target density and have been successfully used for various probabilistic modeling tasks.

Fast and Slow Learning of Recurrent Independent Mechanisms

no code implementations18 May 2021 Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, Yoshua Bengio

To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs and its reward function are stationary and can be re-used across tasks.

Meta-Learning

Accounting for Variance in Machine Learning Benchmarks

no code implementations1 Mar 2021 Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin Szeto, Naz Sepah, Edward Raff, Kanika Madan, Vikram Voleti, Samira Ebrahimi Kahou, Vincent Michalski, Dmitriy Serdyuk, Tal Arbel, Chris Pal, Gaël Varoquaux, Pascal Vincent

Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the learning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices.

Benchmarking BIG-bench Machine Learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.