Search Results for author: Karlheinz Meier

Found 21 papers, 2 papers with code

Structural plasticity on an accelerated analog neuromorphic hardware system

no code implementations27 Dec 2019 Sebastian Billaudelle, Benjamin Cramer, Mihai A. Petrovici, Korbinian Schreiber, David Kappel, Johannes Schemmel, Karlheinz Meier

In computational neuroscience, as well as in machine learning, neuromorphic devices promise an accelerated and scalable alternative to neural network simulations.

Computational Efficiency

Neuromorphic Hardware learns to learn

no code implementations15 Mar 2019 Thomas Bohnstingl, Franz Scherr, Christian Pehle, Karlheinz Meier, Wolfgang Maass

In contrast, the hyperparameters and learning algorithms of networks of neurons in the brain, which they aim to emulate, have been optimized through extensive evolutionary and developmental processes for specific ranges of computing and learning tasks.

Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

no code implementations8 Nov 2018 Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency.

Stochasticity from function -- why the Bayesian brain may need no noise

no code implementations21 Sep 2018 Dominik Dold, Ilja Bytschok, Akos F. Kungl, Andreas Baumbach, Oliver Breitwieser, Walter Senn, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici

An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing.

Bayesian Inference

Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

no code implementations15 Jan 2018 Kai Zoschke, Maurice Güttler, Lars Böttcher, Andreas Grübl, Dan Husmann, Johannes Schemmel, Karlheinz Meier, Oswin Ehrmann

Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system.

Spiking neurons with short-term synaptic plasticity form superior generative networks

no code implementations24 Sep 2017 Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici

In this work, we use networks of leaky integrate-and-fire neurons that are trained to perform both discriminative and generative tasks in their forward and backward information processing paths, respectively.

Robustness from structure: Inference with hierarchical spiking networks on analog neuromorphic hardware

no code implementations12 Mar 2017 Mihai A. Petrovici, Anna Schroeder, Oliver Breitwieser, Andreas Grübl, Johannes Schemmel, Karlheinz Meier

How spiking networks are able to perform probabilistic inference is an intriguing question, not only for understanding information processing in the brain, but also for transferring these computational principles to neuromorphic silicon circuits.

Stochastic inference with spiking neurons in the high-conductance state

no code implementations23 Oct 2016 Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, Karlheinz Meier

The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro.

Bayesian Inference Vocal Bursts Intensity Prediction

Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System

no code implementations18 Apr 2016 Simon Friedmann, Johannes Schemmel, Andreas Gruebl, Andreas Hartel, Matthias Hock, Karlheinz Meier

This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits.

The high-conductance state enables neural sampling in networks of LIF neurons

no code implementations5 Jan 2016 Mihai A. Petrovici, Ilja Bytschok, Johannes Bill, Johannes Schemmel, Karlheinz Meier

The core idea of our approach is to separately consider two different "modes" of spiking dynamics: burst spiking and transient quiescence, in which the neuron does not spike for longer periods.

Bayesian Inference

Stochastic inference with deterministic spiking neurons

no code implementations13 Nov 2013 Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, Karlheinz Meier

The seemingly stochastic transient dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference.

Bayesian Inference

A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model

no code implementations NeurIPS 2010 Sebastian Millner, Andreas Grübl, Karlheinz Meier, Johannes Schemmel, Marc-Olivier Schwartz

We describe an accelerated hardware neuron being capable of emulating the adap-tive exponential integrate-and-fire neuron model.

Cannot find the paper you are looking for? You can Submit a new open access paper.