Search Results for author: Martin Erdmann

Found 7 papers, 5 papers with code

Shared Data and Algorithms for Deep Learning in Fundamental Physics

1 code implementation1 Jul 2021 Lisa Benato, Erik Buhmann, Martin Erdmann, Peter Fackeldey, Jonas Glombitza, Nikolai Hartmann, Gregor Kasieczka, William Korcari, Thomas Kuhr, Jan Steinheimer, Horst Stöcker, Tilman Plehn, Kai Zhou

We introduce a Python package that provides simply and unified access to a collection of datasets from fundamental physics research - including particle physics, astroparticle physics, and hadron- and nuclear physics - for supervised machine learning studies.

BIG-bench Machine Learning Transfer Learning

Lorentz Boost Networks: Autonomous Physics-Inspired Feature Engineering

1 code implementation23 Dec 2018 Martin Erdmann, Erik Geiser, Yannik Rath, Marcel Rieger

The LBN also enables the formation of further composite particles, which are then transformed into said rest frames by Lorentz transformation.

High Energy Physics - Experiment High Energy Physics - Phenomenology

Machine Learning in High Energy Physics Community White Paper

no code implementations8 Jul 2018 Kim Albertsson, Piero Altoe, Dustin Anderson, John Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Bjorn Burkle, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Yi-fan Chen, Taylor Childers, Yann Coadou, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Andrea De Simone, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ulrich Heintz, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Sydney Otten, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Wei Sun, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Justin Vasel, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Kun Yang, Omar Zapata

In this document we discuss promising future research and development areas for machine learning in particle physics.

BIG-bench Machine Learning Vocal Bursts Intensity Prediction

Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network

1 code implementation5 Jul 2018 Martin Erdmann, Jonas Glombitza, Thorben Quast

The generator is constraint during the training such that the generated showers show the expected dependency on the initial energy and the impact position.

Instrumentation and Detectors

Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks

no code implementations9 Feb 2018 Martin Erdmann, Lukas Geiger, Jonas Glombitza, David Schmidt

We use adversarial network architectures together with the Wasserstein distance to generate or refine simulated detector data.

Instrumentation and Methods for Astrophysics High Energy Physics - Experiment

CRPropa 3 - a Public Astrophysical Simulation Framework for Propagating Extraterrestrial Ultra-High Energy Particles

4 code implementations23 Mar 2016 Rafael Alves Batista, Andrej Dundovic, Martin Erdmann, Karl-Heinz Kampert, Daniel Kuempel, Gero Müller, Guenter Sigl, Arjen van Vliet, David Walz, Tobias Winchen

We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles.

Instrumentation and Methods for Astrophysics Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies High Energy Astrophysical Phenomena

PARSEC: A Parametrized Simulation Engine for Ultra-High Energy Cosmic Ray Protons

4 code implementations15 Feb 2013 Hans-Peter Bretz, Martin Erdmann, Peter Schiffer, David Walz, Tobias Winchen

We present a new simulation engine for fast generation of ultra-high energy cosmic ray data based on parametrizations of common assumptions of UHECR origin and propagation.

High Energy Astrophysical Phenomena

Cannot find the paper you are looking for? You can Submit a new open access paper.