Search Results for author: Matthew J. Tyska

Found 5 papers, 1 papers with code

VoxelEmbed: 3D Instance Segmentation and Tracking with Voxel Embedding based Deep Learning

no code implementations22 Jun 2021 Mengyang Zhao, Quan Liu, Aadarsh Jha, Ruining Deng, Tianyuan Yao, Anita Mahadevan-Jansen, Matthew J. Tyska, Bryan A. Millis, Yuankai Huo

Recently, pixel embedding-based cell instance segmentation and tracking provided a neat and generalizable computing paradigm for understanding cellular dynamics.

3D Instance Segmentation Cell Tracking +2

ASIST: Annotation-free Synthetic Instance Segmentation and Tracking by Adversarial Simulations

no code implementations3 Jan 2021 Quan Liu, Isabella M. Gaeta, Mengyang Zhao, Ruining Deng, Aadarsh Jha, Bryan A. Millis, Anita Mahadevan-Jansen, Matthew J. Tyska, Yuankai Huo

Contribution: The contribution of this paper is three-fold: (1) the proposed method aggregates adversarial simulations and single-stage pixel-embedding based deep learning; (2) the method is assessed with both the cellular (i. e., HeLa cells) and subcellular (i. e., microvilli) objects; and (3) to the best of our knowledge, this is the first study to explore annotation-free instance segmentation and tracking study for microscope videos.

Instance Segmentation Segmentation +1

CaCL: Class-aware Codebook Learning for Weakly Supervised Segmentation on Diffuse Image Patterns

1 code implementation2 Nov 2020 Ruining Deng, Quan Liu, Shunxing Bao, Aadarsh Jha, Catie Chang, Bryan A. Millis, Matthew J. Tyska, Yuankai Huo

Our contribution is three-fold: (1) we approach the weakly supervised segmentation from a novel codebook learning perspective; (2) the CaCL algorithm segments diffuse image patterns rather than focal objects; and (3) the proposed algorithm is implemented in a multi-task framework based on Vector Quantised-Variational AutoEncoder (VQ-VAE) via joint image reconstruction, classification, feature embedding, and segmentation.

Image Reconstruction Segmentation +2

GAN based Unsupervised Segmentation: Should We Match the Exact Number of Objects

no code implementations22 Oct 2020 Quan Liu, Isabella M. Gaeta, Bryan A. Millis, Matthew J. Tyska, Yuankai Huo

To match the number of objects at the micro-level, the novel fluorescence-based micro-level matching approach was presented.

Segmentation

Cannot find the paper you are looking for? You can Submit a new open access paper.