Search Results for author: Robert Stanforth

Found 17 papers, 9 papers with code

Unlocking Accuracy and Fairness in Differentially Private Image Classification

2 code implementations21 Aug 2023 Leonard Berrada, Soham De, Judy Hanwen Shen, Jamie Hayes, Robert Stanforth, David Stutz, Pushmeet Kohli, Samuel L. Smith, Borja Balle

The poor performance of classifiers trained with DP has prevented the widespread adoption of privacy preserving machine learning in industry.

Classification Fairness +2

Expressive Losses for Verified Robustness via Convex Combinations

1 code implementation23 May 2023 Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. Pawan Kumar, Robert Stanforth, Alessio Lomuscio

In order to train networks for verified adversarial robustness, it is common to over-approximate the worst-case loss over perturbation regions, resulting in networks that attain verifiability at the expense of standard performance.

Adversarial Robustness

Differentially Private Diffusion Models Generate Useful Synthetic Images

no code implementations27 Feb 2023 Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes, Soham De, Samuel L. Smith, Olivia Wiles, Borja Balle

By privately fine-tuning ImageNet pre-trained diffusion models with more than 80M parameters, we obtain SOTA results on CIFAR-10 and Camelyon17 in terms of both FID and the accuracy of downstream classifiers trained on synthetic data.

Image Generation Privacy Preserving

IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound

1 code implementation29 Jun 2022 Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. Pawan Kumar, Robert Stanforth

Recent works have tried to increase the verifiability of adversarially trained networks by running the attacks over domains larger than the original perturbations and adding various regularization terms to the objective.

Adversarial Robustness

Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications

1 code implementation NeurIPS 2021 Leonard Berrada, Sumanth Dathathri, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Jonathan Uesato, Sven Gowal, M. Pawan Kumar

In this direction, we first introduce a general formulation of probabilistic specifications for neural networks, which captures both probabilistic networks (e. g., Bayesian neural networks, MC-Dropout networks) and uncertain inputs (distributions over inputs arising from sensor noise or other perturbations).

Adversarial Robustness Out of Distribution (OOD) Detection

Towards Verified Robustness under Text Deletion Interventions

no code implementations ICLR 2020 Johannes Welbl, Po-Sen Huang, Robert Stanforth, Sven Gowal, Krishnamurthy (Dj) Dvijotham, Martin Szummer, Pushmeet Kohli

Neural networks are widely used in Natural Language Processing, yet despite their empirical successes, their behaviour is brittle: they are both over-sensitive to small input changes, and under-sensitive to deletions of large fractions of input text.

Natural Language Inference

Adversarial Robustness through Local Linearization

no code implementations NeurIPS 2019 Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet Kohli

Using this regularizer, we exceed current state of the art and achieve 47% adversarial accuracy for ImageNet with l-infinity adversarial perturbations of radius 4/255 under an untargeted, strong, white-box attack.

Adversarial Defense Adversarial Robustness

Towards Stable and Efficient Training of Verifiably Robust Neural Networks

2 code implementations ICLR 2020 Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning, Cho-Jui Hsieh

In this paper, we propose a new certified adversarial training method, CROWN-IBP, by combining the fast IBP bounds in a forward bounding pass and a tight linear relaxation based bound, CROWN, in a backward bounding pass.

Are Labels Required for Improving Adversarial Robustness?

1 code implementation NeurIPS 2019 Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli

Recent work has uncovered the interesting (and somewhat surprising) finding that training models to be invariant to adversarial perturbations requires substantially larger datasets than those required for standard classification.

4k Adversarial Robustness

Verification of Non-Linear Specifications for Neural Networks

no code implementations ICLR 2019 Chongli Qin, Krishnamurthy, Dvijotham, Brendan O'Donoghue, Rudy Bunel, Robert Stanforth, Sven Gowal, Jonathan Uesato, Grzegorz Swirszcz, Pushmeet Kohli

We show that a number of important properties of interest can be modeled within this class, including conservation of energy in a learned dynamics model of a physical system; semantic consistency of a classifier's output labels under adversarial perturbations and bounding errors in a system that predicts the summation of handwritten digits.

Strength in Numbers: Trading-off Robustness and Computation via Adversarially-Trained Ensembles

no code implementations ICLR 2019 Edward Grefenstette, Robert Stanforth, Brendan O'Donoghue, Jonathan Uesato, Grzegorz Swirszcz, Pushmeet Kohli

We show that increasing the number of parameters in adversarially-trained models increases their robustness, and in particular that ensembling smaller models while adversarially training the entire ensemble as a single model is a more efficient way of spending said budget than simply using a larger single model.

Self-Driving Cars

On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models

9 code implementations30 Oct 2018 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Mann, Pushmeet Kohli

Recent work has shown that it is possible to train deep neural networks that are provably robust to norm-bounded adversarial perturbations.

Training verified learners with learned verifiers

no code implementations25 May 2018 Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O'Donoghue, Jonathan Uesato, Pushmeet Kohli

This paper proposes a new algorithmic framework, predictor-verifier training, to train neural networks that are verifiable, i. e., networks that provably satisfy some desired input-output properties.

A Dual Approach to Scalable Verification of Deep Networks

2 code implementations17 Mar 2018 Krishnamurthy, Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, Pushmeet Kohli

In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs.

valid

Cannot find the paper you are looking for? You can Submit a new open access paper.