Search Results for author: Stefan K. Piechnik

Found 11 papers, 3 papers with code

Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to Data Imbalance in Deep Learning Based Segmentation

no code implementations23 Jun 2021 Esther Puyol-Anton, Bram Ruijsink, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Reza Razavi, Andrew P. King

The subject of "fairness" in artificial intelligence (AI) refers to assessing AI algorithms for potential bias based on demographic characteristics such as race and gender, and the development of algorithms to address this bias.

Fairness Meta-Learning +1

Fully Automated Myocardial Strain Estimation from CMR Tagged Images using a Deep Learning Framework in the UK Biobank

no code implementations15 Apr 2020 Edward Ferdian, Avan Suinesiaputra, Kenneth Fung, Nay Aung, Elena Lukaschuk, Ahmet Barutcu, Edd Maclean, Jose Paiva, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alistair A. Young

The fully automatic framework consisted of 1) a convolutional neural network (CNN) for localization, and 2) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice.

Image Registration

Joint Motion Estimation and Segmentation from Undersampled Cardiac MR Image

no code implementations20 Aug 2019 Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data.

Image Reconstruction Motion Estimation +1

Improving the generalizability of convolutional neural network-based segmentation on CMR images

1 code implementation2 Jul 2019 Chen Chen, Wenjia Bai, Rhodri H. Davies, Anish N. Bhuva, Charlotte Manisty, James C. Moon, Nay Aung, Aaron M. Lee, Mihir M. Sanghvi, Kenneth Fung, Jose Miguel Paiva, Steffen E. Petersen, Elena Lukaschuk, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy.

Image Segmentation Segmentation +1

Automatic Assessment of Full Left Ventricular Coverage in Cardiac Cine Magnetic Resonance Imaging with Fisher-Discriminative 3D CNN

no code implementations6 Nov 2018 Le Zhang, Ali Gooya, Marco Pereanez, Bo Dong, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi

Full coverage of the left ventricle (LV), from base to apex, is a basic criterion for CMR image quality and necessary for accurate measurement of cardiac volume and functional assessment.

Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences

1 code implementation11 Jun 2018 Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Daniel Rueckert

Cardiac motion estimation and segmentation play important roles in quantitatively assessing cardiac function and diagnosing cardiovascular diseases.

Cardiac Segmentation Motion Estimation +2

Automated cardiovascular magnetic resonance image analysis with fully convolutional networks

1 code implementation25 Oct 2017 Wenjia Bai, Matthew Sinclair, Giacomo Tarroni, Ozan Oktay, Martin Rajchl, Ghislain Vaillant, Aaron M. Lee, Nay Aung, Elena Lukaschuk, Mihir M. Sanghvi, Filip Zemrak, Kenneth Fung, Jose Miguel Paiva, Valentina Carapella, Young Jin Kim, Hideaki Suzuki, Bernhard Kainz, Paul M. Matthews, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Ben Glocker, Daniel Rueckert

By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance on par with human experts in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images.

Cannot find the paper you are looking for? You can Submit a new open access paper.