Search Results for author: Yunqiang Chen

Found 8 papers, 2 papers with code

Validating uncertainty in medical image translation

1 code implementation11 Feb 2020 Jacob C. Reinhold, Yufan He, Shizhong Han, Yunqiang Chen, Dashan Gao, Junghoon Lee, Jerry L. Prince, Aaron Carass

Medical images are increasingly used as input to deep neural networks to produce quantitative values that aid researchers and clinicians.

Translation

Finding novelty with uncertainty

2 code implementations11 Feb 2020 Jacob C. Reinhold, Yufan He, Shizhong Han, Yunqiang Chen, Dashan Gao, Junghoon Lee, Jerry L. Prince, Aaron Carass

Medical images are often used to detect and characterize pathology and disease; however, automatically identifying and segmenting pathology in medical images is challenging because the appearance of pathology across diseases varies widely.

Segmentation

Outlier Guided Optimization of Abdominal Segmentation

no code implementations10 Feb 2020 Yuchen Xu, Olivia Tang, Yucheng Tang, Ho Hin Lee, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

We built on a pre-trained 3D U-Net model for abdominal multi-organ segmentation and augmented the dataset either with outlier data (e. g., exemplars for which the baseline algorithm failed) or inliers (e. g., exemplars for which the baseline algorithm worked).

Active Learning Computed Tomography (CT) +2

Contrast Phase Classification with a Generative Adversarial Network

no code implementations14 Nov 2019 Yucheng Tang, Ho Hin Lee, Yuchen Xu, Olivia Tang, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Camilo Bermudez, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

Dynamic contrast enhanced computed tomography (CT) is an imaging technique that provides critical information on the relationship of vascular structure and dynamics in the context of underlying anatomy.

Anatomy Classification +4

Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision

no code implementations12 Nov 2019 Ho Hin Lee, Yucheng Tang, Olivia Tang, Yuchen Xu, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

The contributions of the proposed method are threefold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional true/false, and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more robust and higher accuracy than the original baseline method.

Image Segmentation Medical Image Segmentation +3

Cannot find the paper you are looking for? You can Submit a new open access paper.