Search Results for author: Zhepeng Cen

Found 9 papers, 5 papers with code

Learning from Sparse Offline Datasets via Conservative Density Estimation

1 code implementation16 Jan 2024 Zhepeng Cen, Zuxin Liu, Zitong Wang, Yihang Yao, Henry Lam, Ding Zhao

Offline reinforcement learning (RL) offers a promising direction for learning policies from pre-collected datasets without requiring further interactions with the environment.

D4RL Density Estimation +2

Gradient Shaping for Multi-Constraint Safe Reinforcement Learning

no code implementations23 Dec 2023 Yihang Yao, Zuxin Liu, Zhepeng Cen, Peide Huang, Tingnan Zhang, Wenhao Yu, Ding Zhao

Leveraging insights from this framework and recognizing the significance of \textit{redundant} and \textit{conflicting} constraint conditions, we introduce the Gradient Shaping (GradS) method for general Lagrangian-based safe RL algorithms to improve the training efficiency in terms of both reward and constraint satisfaction.

reinforcement-learning Reinforcement Learning (RL) +1

Datasets and Benchmarks for Offline Safe Reinforcement Learning

3 code implementations15 Jun 2023 Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wenhao Yu, Tingnan Zhang, Jie Tan, Ding Zhao

This paper presents a comprehensive benchmarking suite tailored to offline safe reinforcement learning (RL) challenges, aiming to foster progress in the development and evaluation of safe learning algorithms in both the training and deployment phases.

Autonomous Driving Benchmarking +4

Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability

no code implementations16 Sep 2022 Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, Ding Zhao

A trustworthy reinforcement learning algorithm should be competent in solving challenging real-world problems, including {robustly} handling uncertainties, satisfying {safety} constraints to avoid catastrophic failures, and {generalizing} to unseen scenarios during deployments.

reinforcement-learning Reinforcement Learning (RL)

On the Robustness of Safe Reinforcement Learning under Observational Perturbations

1 code implementation29 May 2022 Zuxin Liu, Zijian Guo, Zhepeng Cen, huan zhang, Jie Tan, Bo Li, Ding Zhao

One interesting and counter-intuitive finding is that the maximum reward attack is strong, as it can both induce unsafe behaviors and make the attack stealthy by maintaining the reward.

Adversarial Attack reinforcement-learning +2

Test Against High-Dimensional Uncertainties: Accelerated Evaluation of Autonomous Vehicles with Deep Importance Sampling

no code implementations4 Apr 2022 Mansur Arief, Zhepeng Cen, Zhenyuan Liu, Zhiyuang Huang, Henry Lam, Bo Li, Ding Zhao

In this work, we present Deep Importance Sampling (Deep IS) framework that utilizes a deep neural network to obtain an efficient IS that is on par with the state-of-the-art, capable of reducing the required sample size 43 times smaller than the naive sampling method to achieve 10% relative error and while producing an estimate that is much less conservative.

Autonomous Vehicles

Constrained Variational Policy Optimization for Safe Reinforcement Learning

2 code implementations28 Jan 2022 Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Zhiwei Steven Wu, Bo Li, Ding Zhao

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying them to safety-critical applications.

reinforcement-learning Reinforcement Learning (RL) +1

Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora

no code implementations Findings of the Association for Computational Linguistics 2020 Hancheng Cao, Mengjie Cheng, Zhepeng Cen, Daniel A. McFarland, Xiang Ren

We extract scientific concepts (i. e., phrases) from corpora as instantiations of "research ideas", create concept-level features as motivated by literature, and then follow the trajectories of over 450, 000 new concepts (emerged from 1995-2014) to identify factors that lead only a small proportion of these ideas to be used in inventions and drug trials.

Transfer Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.