Search Results for author: Zhezheng Luo

Found 6 papers, 0 papers with code

On the Expressiveness and Generalization of Hypergraph Neural Networks

no code implementations9 Mar 2023 Zhezheng Luo, Jiayuan Mao, Joshua B. Tenenbaum, Leslie Pack Kaelbling

Next, we analyze the learning properties of these neural networks, especially focusing on how they can be trained on a finite set of small graphs and generalize to larger graphs, which we term structural generalization.

Learning Rational Subgoals from Demonstrations and Instructions

no code implementations9 Mar 2023 Zhezheng Luo, Jiayuan Mao, Jiajun Wu, Tomás Lozano-Pérez, Joshua B. Tenenbaum, Leslie Pack Kaelbling

We present a framework for learning useful subgoals that support efficient long-term planning to achieve novel goals.

On the Expressiveness and Learning of Relational Neural Networks on Hypergraphs

no code implementations29 Sep 2021 Zhezheng Luo, Jiayuan Mao, Joshua B. Tenenbaum, Leslie Pack Kaelbling

Our first contribution is a fine-grained analysis of the expressiveness of these neural networks, that is, the set of functions that they can realize and the set of problems that they can solve.

Learning Rational Skills for Planning from Demonstrations and Instructions

no code implementations29 Sep 2021 Zhezheng Luo, Jiayuan Mao, Jiajun Wu, Tomas Perez, Joshua B. Tenenbaum, Leslie Pack Kaelbling

We present a framework for learning compositional, rational skill models (RatSkills) that support efficient planning and inverse planning for achieving novel goals and recognizing activities.

Temporal and Object Quantification Networks

no code implementations10 Jun 2021 Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, Tomer D. Ullman

We present Temporal and Object Quantification Networks (TOQ-Nets), a new class of neuro-symbolic networks with a structural bias that enables them to learn to recognize complex relational-temporal events.

Object Temporal Sequences

Temporal and Object Quantification Nets

no code implementations1 Jan 2021 Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, Tomer Ullman

We aim to learn generalizable representations for complex activities by quantifying over both entities and time, as in “the kicker is behind all the other players,” or “the player controls the ball until it moves toward the goal.” Such a structural inductive bias of object relations, object quantification, and temporal orders will enable the learned representation to generalize to situations with varying numbers of agents, objects, and time courses.

Event Detection Inductive Bias +1

Cannot find the paper you are looking for? You can Submit a new open access paper.