The dataset contains full-spectral autofluorescence lifetime microscopic images (FS-FLIM) acquired on unstained ex-vivo human lung tissue, where 100 4D hypercubes of 256x256 (spatial resolution) x 32 (time bins) x 512 (spectral channels from 500nm to 780nm). This dataset associates with our paper "Deep Learning-Assisted Co-registration of Full-Spectral Autofluorescence Lifetime Microscopic Images with H&E-Stained Histology Images" (https://arxiv.org/abs/2202.07755) and "Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution" (https://doi.org/10.1038/s41467-021-26837-0).
The FS-FLIM images provide transformative insights into human lung cancer with extra-dimensional information. This will enable visual and precise detection of early lung cancer. With the methodology in our co-registration paper, FS-FLIM images can be registered with H&E-stained histology images, allowing characterisation of tumour and surrounding cells at a celluar level with absolute autofluorescence lifetime.
The dataset can be used for various purposes, including signal processing for optimal lifetime reconstruction, advanced image analysis for automatic feature extraction of lung cancer, and cellular-level characterisation of lung cancer with absolute label-free autofluorescence lifetime values.
The dataset is available on the University of Edinburgh's DataShare (https://doi.org/10.7488/ds/3099 and https://doi.org/10.7488/ds/3421)