HaGRID (HaGRID - HAnd Gesture Recognition Image Dataset)

Introduced by Kapitanov et al. in HaGRID -- HAnd Gesture Recognition Image Dataset

We introduce a large image dataset HaGRID (HAnd Gesture Recognition Image Dataset) for hand gesture recognition (HGR) systems. You can use it for image classification or image detection tasks. Proposed dataset allows to build HGR systems, which can be used in video conferencing services (Zoom, Skype, Discord, Jazz etc.), home automation systems, the automotive sector, etc.

HaGRID size is 716GB and dataset contains 552,992 FullHD (1920 × 1080) RGB images divided into 18 classes of gestures. Also, some images have no_gesture class if there is a second free hand in the frame. This extra class contains 123,589 samples. The data were split into training 92%, and testing 8% sets by subject user_id, with 509,323 images for train and 43,669 images for test.

The annotations consist of bounding boxes of hands in COCO format [top left X position, top left Y position, width, height] with gesture labels. Also, annotations have 21 landmarks in format [x,y] relative image coordinates, markups of leading hands (left or right for gesture hand) and leading_conf as confidence for leading_hand annotation. We provide user_id field that will allow you to split the train / val dataset yourself.


Paper Code Results Date Stars

Dataset Loaders

No data loaders found. You can submit your data loader here.


Similar Datasets