Introduced by Jiang Wang et al. in Mining actionlet ensemble for action recognition with depth cameras

DailyActivity3D dataset is a daily activity dataset captured by a Kinect device. There are 16 activity types: drink, eat, read book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit down. If possible, each subject performs an activity in two different poses: “sitting on sofa” and “standing”. The total number of the activity samples is 320. This dataset is designed to cover human’s daily activities in the living room. When the performer stands close to the sofa or sits on the sofa, the 3D joint positions extracted by the skeleton tracker are very noisy. Moreover, most of the activities involve the humans-object interactions. Thus this dataset is more challenging.



Paper Code Results Date Stars

Dataset Loaders

No data loaders found. You can submit your data loader here.


Similar Datasets