• NeoRL is a collection of environments and datasets for offline reinforcement learning with a special focus on real-world applications. The design follows real-world properties like the conservative of behavior policies, limited amounts of data, high-dimensional state and action spaces, and the highly stochastic nature of the environments.
  • The datasets include robotics, industrial control, finance trading and city management tasks with real-world properties, containing three-level sizes of dataset, three-level quality of data to mimic the dataset we will meet in offline RL scenarios.
  • Users can use the dataset to evaluate offline RL algorithms with near real-world application nature.


Paper Code Results Date Stars

Dataset Loaders

No data loaders found. You can submit your data loader here.


Similar Datasets