Datasets > Modality > Images > SMOT (Single sequence-Multi Objects Training)

SMOT (Single sequence-Multi Objects Training)

Introduced by Park et al. in Neural Object Learning for 6D Pose Estimation Using a Few Cluttered Images

The SMOT dataset, Single sequence-Multi Objects Training, is collected to represent a practical scenario of collecting training images of new objects in the real world, i.e. a mobile robot with an RGB-D camera collects a sequence of frames while driving around a table to learning multiple objects and tries to recognize objects in different locations.

Source: SMOT

Samples

License

  • Unknown

Modalities

Languages

Tasks