Introduced by Deruyttere et al. in Talk2Car: Taking Control of Your Self-Driving Car

The Talk2Car dataset finds itself at the intersection of various research domains, promoting the development of cross-disciplinary solutions for improving the state-of-the-art in grounding natural language into visual space. The annotations were gathered with the following aspects in mind: Free-form high quality natural language commands, that stimulate the development of solutions that can operate in the wild. A realistic task setting. Specifically, the authors consider an autonomous driving setting, where a passenger can control the actions of an Autonomous Vehicle by giving commands in natural language. The Talk2Car dataset was build on top of the nuScenes dataset to include an extensive suite of sensor modalities, i.e. semantic maps, GPS, LIDAR, RADAR and 360-degree RGB images annotated with 3D bounding boxes. Such variety of input modalities sets the object referral task on the Talk2Car dataset apart from related challenges, where additional sensor modalities are generally missing.



Paper Code Results Date Stars

Dataset Loaders


Similar Datasets


  • Unknown