End-to-end speech-to-text translation (ST) has recently witnessed an increased interest given its system simplicity, lower inference latency and less compounding errors compared to cascaded ST (i.e. speech recognition + machine translation). End-to-end ST model training, however, is often hampered by the lack of parallel data. Thus, we created CoVoST, a large-scale multilingual ST corpus based on Common Voice, to foster ST research with the largest ever open dataset. Its latest version covers translations from English into 15 languages---Arabic, Catalan, Welsh, German, Estonian, Persian, Indonesian, Japanese, Latvian, Mongolian, Slovenian, Swedish, Tamil, Turkish, Chinese---and from 21 languages into English, including the 15 target languages as well as Spanish, French, Italian, Dutch, Portuguese, Russian. It has total 2,880 hours of speech and is diversified with 78K speakers.
57 PAPERS
• NO BENCHMARKS YET