ShapeNet is a large scale repository for 3D CAD models developed by researchers from Stanford University, Princeton University and the Toyota Technological Institute at Chicago, USA. The repository contains over 300M models with 220,000 classified into 3,135 classes arranged using WordNet hypernym-hyponym relationships. ShapeNet Parts subset contains 31,693 meshes categorised into 16 common object classes (i.e. table, chair, plane etc.). Each shapes ground truth contains 2-5 parts (with a total of 50 part classes).
1,194 PAPERS • 11 BENCHMARKS
The ModelNet40 dataset contains synthetic object point clouds. As the most widely used benchmark for point cloud analysis, ModelNet40 is popular because of its various categories, clean shapes, well-constructed dataset, etc. The original ModelNet40 consists of 12,311 CAD-generated meshes in 40 categories (such as airplane, car, plant, lamp), of which 9,843 are used for training while the rest 2,468 are reserved for testing. The corresponding point cloud data points are uniformly sampled from the mesh surfaces, and then further preprocessed by moving to the origin and scaling into a unit sphere.
950 PAPERS • 7 BENCHMARKS
The nuScenes dataset is a large-scale autonomous driving dataset. The dataset has 3D bounding boxes for 1000 scenes collected in Boston and Singapore. Each scene is 20 seconds long and annotated at 2Hz. This results in a total of 28130 samples for training, 6019 samples for validation and 6008 samples for testing. The dataset has the full autonomous vehicle data suite: 32-beam LiDAR, 6 cameras and radars with complete 360° coverage. The 3D object detection challenge evaluates the performance on 10 classes: cars, trucks, buses, trailers, construction vehicles, pedestrians, motorcycles, bicycles, traffic cones and barriers.
739 PAPERS • 15 BENCHMARKS
The SUN RGBD dataset contains 10335 real RGB-D images of room scenes. Each RGB image has a corresponding depth and segmentation map. As many as 700 object categories are labeled. The training and testing sets contain 5285 and 5050 images, respectively.
302 PAPERS • 12 BENCHMARKS
The Stanford 3D Indoor Scene Dataset (S3DIS) dataset contains 6 large-scale indoor areas with 271 rooms. Each point in the scene point cloud is annotated with one of the 13 semantic categories.
292 PAPERS • 7 BENCHMARKS
Berkeley Segmentation Data Set 500 (BSDS500) is a standard benchmark for contour detection. This dataset is designed for evaluating natural edge detection that includes not only object contours but also object interior boundaries and background boundaries. It includes 500 natural images with carefully annotated boundaries collected from multiple users. The dataset is divided into three parts: 200 for training, 100 for validation and the rest 200 for test.
209 PAPERS • 8 BENCHMARKS
Argoverse is a tracking benchmark with over 30K scenarios collected in Pittsburgh and Miami. Each scenario is a sequence of frames sampled at 10 HZ. Each sequence has an interesting object called “agent”, and the task is to predict the future locations of agents in a 3 seconds future horizon. The sequences are split into training, validation and test sets, which have 205,942, 39,472 and 78,143 sequences respectively. These splits have no geographical overlap.
202 PAPERS • 5 BENCHMARKS
ScanObjectNN is a newly published real-world dataset comprising of 2902 3D objects in 15 categories. It is a challenging point cloud classification datasets due to the background, missing parts and deformations.
129 PAPERS • 2 BENCHMARKS
SUN3D contains a large-scale RGB-D video database, with 8 annotated sequences. Each frame has a semantic segmentation of the objects in the scene and information about the camera pose. It is composed by 415 sequences captured in 254 different spaces, in 41 different buildings. Moreover, some places have been captured multiple times at different moments of the day.
90 PAPERS • NO BENCHMARKS YET
Semantic3D is a point cloud dataset of scanned outdoor scenes with over 3 billion points. It contains 15 training and 15 test scenes annotated with 8 class labels. This large labelled 3D point cloud data set of natural covers a range of diverse urban scenes: churches, streets, railroad tracks, squares, villages, soccer fields, castles to name just a few. The point clouds provided are scanned statically with state-of-the-art equipment and contain very fine details.
55 PAPERS • 1 BENCHMARK
KITTI Road is road and lane estimation benchmark that consists of 289 training and 290 test images. It contains three different categories of road scenes: * uu - urban unmarked (98/100) * um - urban marked (95/96) * umm - urban multiple marked lanes (96/94) * urban - combination of the three above Ground truth has been generated by manual annotation of the images and is available for two different road terrain types: road - the road area, i.e, the composition of all lanes, and lane - the ego-lane, i.e., the lane the vehicle is currently driving on (only available for category "um"). Ground truth is provided for training images only.
29 PAPERS • NO BENCHMARKS YET
The Completion3D benchmark is a dataset for evaluating state-of-the-art 3D Object Point Cloud Completion methods. Ggiven a partial 3D object point cloud the goal is to infer a complete 3D point cloud for the object.
28 PAPERS • 1 BENCHMARK
The SemanticPOSS dataset for 3D semantic segmentation contains 2988 various and complicated LiDAR scans with large quantity of dynamic instances. The data is collected in Peking University and uses the same data format as SemanticKITTI.
Dex-Net 2.0 is a dataset associating 6.7 million point clouds and analytic grasp quality metrics with parallel-jaw grasps planned using robust quasi-static GWS analysis on a dataset of 1,500 3D object models.
24 PAPERS • NO BENCHMARKS YET
For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real images. Hypersim is a photorealistic synthetic dataset for holistic indoor scene understanding. It contains 77,400 images of 461 indoor scenes with detailed per-pixel labels and corresponding ground truth geometry.
24 PAPERS • 1 BENCHMARK
ReferIt3D provides two large-scale and complementary visio-linguistic datasets: i) Sr3D, which contains 83.5K template-based utterances leveraging spatial relations among fine-grained object classes to localize a referred object in a scene, and ii) Nr3D which contains 41.5K natural, free-form, utterances collected by deploying a 2-player object reference game in 3D scenes. This dataset can be used for 3D visual grounding and 3D dense captioning tasks.
22 PAPERS • NO BENCHMARKS YET
Our project (STPLS3D) aims to provide a large-scale aerial photogrammetry dataset with synthetic and real annotated 3D point clouds for semantic and instance segmentation tasks.
20 PAPERS • 2 BENCHMARKS
MVP is a multi-view partial point cloud dataset (MVP) containing over 100,000 high-quality scans, which renders partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model.
19 PAPERS • NO BENCHMARKS YET
ModelNet40-C is a comprehensive dataset to benchmark the corruption robustness of 3D point cloud recognition.
16 PAPERS • 2 BENCHMARKS
The SensatUrbat dataset is an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points, which is five times the number of labeled points than the existing largest point cloud dataset. The dataset consists of large areas from two UK cities, covering about 6 km^2 of the city landscape. In the dataset, each 3D point is labeled as one of 13 semantic classes, such as ground, vegetation, car, etc..
16 PAPERS • 1 BENCHMARK
Toronto-3D is a large-scale urban outdoor point cloud dataset acquired by an MLS system in Toronto, Canada for semantic segmentation. This dataset covers approximately 1 km of road and consists of about 78.3 million points. Point clouds has 10 attributes and classified in 8 labelled object classes.
15 PAPERS • NO BENCHMARKS YET
Shape matching plays an important role in geometry processing and shape analysis. In the last decades, much research has been devoted to improve the quality of matching between surfaces. This huge effort is motivated by several applications such as object retrieval, animation and information transfer just to name a few. Shape matching is usually divided into two main categories: rigid and non rigid matching. In both cases, the standard evaluation is usually performed on shapes that share the same connectivity, in other words, shapes represented by the same mesh. This is mainly due to the availability of a “natural” ground truth that is given for these shapes. Indeed, in most cases the consistent connectivity directly induces a ground truth correspondence between vertices. However, this standard practice obviously does not allow to estimate the robustness of a method with respect to different connectivity. With this track, we propose a benchmark to evaluate the performance of point-to-p
14 PAPERS • 1 BENCHMARK
The WPC (Waterloo Point Cloud) database is a dataset for subjective and objective quality assessment of point clouds.
12 PAPERS • 1 BENCHMARK
The dataset was collected using the Intel RealSense D435i camera, which was configured to produce synchronized accelerometer and gyroscope measurements at 400 Hz, along with synchronized VGA-size (640 x 480) RGB and depth streams at 30 Hz. The depth frames are acquired using active stereo and is aligned to the RGB frame using the sensor factory calibration. All the measurements are timestamped.
11 PAPERS • 1 BENCHMARK
The KITTI-Depth dataset includes depth maps from projected LiDAR point clouds that were matched against the depth estimation from the stereo cameras. The depth images are highly sparse with only 5% of the pixels available and the rest is missing. The dataset has 86k training images, 7k validation images, and 1k test set images on the benchmark server with no access to the ground truth.
10 PAPERS • NO BENCHMARKS YET
RadarScenes is a real-world radar point cloud dataset for automotive applications.
MVTec 3D Anomaly Detection Dataset (MVTec 3D-AD) is a comprehensive 3D dataset for the task of unsupervised anomaly detection and localization. It contains over 4000 high-resolution scans acquired by an industrial 3D sensor. Each of the 10 different object categories comprises a set of defect-free training and validation samples and a test set of samples with various kinds of defects. Precise ground-truth annotations are provided for each anomalous test sample.
8 PAPERS • 4 BENCHMARKS
FAUST-partial is a 3D registration benchmark dataset created to address the lack of data variability in the existing 3D registration benchmarks such as: 3DMatch, ETH, KITTI.
7 PAPERS • 1 BENCHMARK
BLVD is a large scale 5D semantics dataset collected by the Visual Cognitive Computing and Intelligent Vehicles Lab. This dataset contains 654 high-resolution video clips owing 120k frames extracted from Changshu, Jiangsu Province, China, where the Intelligent Vehicle Proving Center of China (IVPCC) is located. The frame rate is 10fps/sec for RGB data and 3D point cloud. The dataset contains fully annotated frames which yield 249,129 3D annotations, 4,902 independent individuals for tracking with the length of overall 214,922 points, 6,004 valid fragments for 5D interactive event recognition, and 4,900 individuals for 5D intention prediction. These tasks are contained in four kinds of scenarios depending on the object density (low and high) and light conditions (daytime and nighttime).
5 PAPERS • NO BENCHMARKS YET
BRACE is a dataset for audio-conditioned dance motion synthesis challenging common assumptions for this task:
5 PAPERS • 2 BENCHMARKS
Cross-source point cloud dataset for registration task. It includes point clouds from structure from motion (SFM), Kinect, Lidar.
4 PAPERS • NO BENCHMARKS YET
ChangeSim is a dataset aimed at online scene change detection (SCD) and more. The data is collected in photo-realistic simulation environments with the presence of environmental non-targeted variations, such as air turbidity and light condition changes, as well as targeted object changes in industrial indoor environments. By collecting data in simulations, multi-modal sensor data and precise ground truth labels are obtainable such as the RGB image, depth image, semantic segmentation, change segmentation, camera poses, and 3D reconstructions. While the previous online SCD datasets evaluate models given well-aligned image pairs, ChangeSim also provides raw unpaired sequences that present an opportunity to develop an online SCD model in an end-to-end manner, considering both pairing and detection. Experiments show that even the latest pair-based SCD models suffer from the bottleneck of the pairing process, and it gets worse when the environment contains the non-targeted variations.
4 PAPERS • 2 BENCHMARKS
Tasks. In moving object segmentation of point cloud sequences, one has to provide motion labels for each point of the test sequences 11-21. Therefore, the input to all evaluated methods is a list of coordinates of the three-dimensional points along with their remission, i.e., the strength of the reflected laser beam which depends on the properties of the surface that was hit. Each method should then output a label for each point of a scan, i.e., one full turn of the rotating LiDAR sensor. Here, we only distinguish between static and moving object classes.
This dataset contains a variety of common urban road objects scanned with a Velodyne HDL-64E LIDAR, collected in the CBD of Sydney, Australia. There are 631 individual scans of objects across classes of vehicles, pedestrians, signs and trees.
4 PAPERS • 1 BENCHMARK
Ford Campus Vision and Lidar Data Set is a dataset collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck. The vehicle is outfitted with a professional (Applanix POS LV) and consumer (Xsens MTI-G) Inertial Measuring Unit (IMU), a Velodyne 3D-lidar scanner, two push-broom forward looking Riegl lidars, and a Point Grey Ladybug3 omnidirectional camera system.
3 PAPERS • NO BENCHMARKS YET
JetClass is a new large-scale dataset to facilitate deep learning research in particle physics. It consists of 100M particle jets for training, 5M for validation and 20M for testing. The dataset contains 10 classes of jets, simulated with MadGraph + Pythia + Delphes. A detailed description of the JetClass dataset is presented in the paper Particle Transformer for Jet Tagging. An interface to use the dataset is provided here.
3 PAPERS • 1 BENCHMARK
JetNet is a particle cloud dataset, containing gluon, top quark, light quark jets saved in .csv format.
SynLiDAR is a large-scale synthetic LiDAR sequential point cloud dataset with point-wise annotations. 13 sequences of LiDAR point cloud with around 20k scans (over 19 billion points and 32 semantic classes) are collected from virtual urban cities, suburban towns, neighborhood, and harbor.
Collected in the snow belt region of Michigan's Upper Peninsula, WADS is the first multi-modal dataset featuring dense point-wise labeled sequential LiDAR scans collected in severe winter weather.
4D-OR includes a total of 6734 scenes, recorded by six calibrated RGB-D Kinect sensors 1 mounted to the ceiling of the OR, with one frame-per-second, providing synchronized RGB and depth images. We provide fused point cloud sequences of entire scenes, automatically annotated human 6D poses and 3D bounding boxes for OR objects. Furthermore, we provide SSG annotations for each step of the surgery together with the clinical roles of all the humans in the scenes, e.g., nurse, head surgeon, anesthesiologist.
2 PAPERS • 1 BENCHMARK
DurLAR is a high-fidelity 128-channel 3D LiDAR dataset with panoramic ambient (near infrared) and reflectivity imagery for multi-modal autonomous driving applications. Compared to existing autonomous driving task datasets, DurLAR has the following novel features:
2 PAPERS • NO BENCHMARKS YET
The Freiburg Spatial Relations dataset features 546 scenes each containing two out of 25 household objects. The depicted spatial relations can roughly be described as on top, on top on the corner, inside, inside and inclined, next to, and inclined. The dataset contains the 25 object models as textured .obj and .dae files, a low resolution .dae version for visualization in rviz, a scene description file containing the translation and rotation of the objects for each scene, a file with labels for each scene, the 15 splits used for cross validation, and a bash script to convert the models to pointclouds.
HPS Dataset is a collection of 3D humans interacting with large 3D scenes (300-1000 $m^2$, up to 2500 $m^2$). The dataset contains images captured from a head-mounted camera coupled with the reference 3D pose and location of the person in a pre-scanned 3D scene. 7 people in 8 large scenes are captured performing activities such as exercising, reading, eating, lecturing, using a computer, making coffee, dancing. The dataset provides more than 300K synchronized RGB images coupled with the reference 3D pose and location.
KAIST-Lane (K-Lane) is the world’s first and the largest public urban road and highway lane dataset for Lidar. K-Lane has more than 15K frames and contains annotations of up to six lanes under various road and traffic conditions, e.g., occluded roads of multiple occlusion levels, roads at day and night times, merging (converging and diverging) and curved lanes.
The MMBody dataset provides human body data with motion capture, GT mesh, Kinect RGBD, and millimeter wave sensor data. See homepage for more details.
Pano3D is a new benchmark for depth estimation from spherical panoramas. Its goal is to drive progress for this task in a consistent and holistic manner. The Pano3D 360 depth estimation benchmark provides a standard Matterport3D train and test split, as well as a secondary GibsonV2 partioning for testing and training as well. The latter is used for zero-shot cross dataset transfer performance assessment and decomposes it into 3 different splits, each one focusing on a specific generalization axis.
S3E is a novel large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor scenes that each exceed 200 seconds, consisting of well synchronized and calibrated high-quality stereo camera, LiDAR, and high-frequency IMU data.
V2X-Sim, short for vehicle-to-everything simulation, is the a synthetic collaborative perception dataset in autonomous driving developed by AI4CE Lab at NYU and MediaBrain Group at SJTU to facilitate collaborative perception between multiple vehicles and roadside infrastructure. Data is collected from both roadside and vehicles when they are presented near the same intersection. With information from both the roadside infrastructure and vehicles, the dataset aims to encourage research on collaborative perception tasks.