ShapeNetCore is a subset of the full ShapeNet dataset with single clean 3D models and manually verified category and alignment annotations. It covers 55 common object categories with about 51,300 unique 3D models. The 12 object categories of PASCAL 3D+, a popular computer vision 3D benchmark dataset, are all covered by ShapeNetCore.
134 PAPERS • 1 BENCHMARK
ModelNet40-C is a comprehensive dataset to benchmark the corruption robustness of 3D point cloud recognition.
18 PAPERS • 2 BENCHMARKS
Attention Deficit Hyperactivity Disorder (ADHD) affects at least 5-10% of school-age children and is associated with substantial lifelong impairment, with annual direct costs exceeding $36 billion/year in the US. Despite a voluminous empirical literature, the scientific community remains without a comprehensive model of the pathophysiology of ADHD. Further, the clinical community remains without objective biological tools capable of informing the diagnosis of ADHD for an individual or guiding clinicians in their decision-making regarding treatment.
2 PAPERS • NO BENCHMARKS YET
This dataset is the images of corn seeds considering the top and bottom view independently (two images for one corn seed: top and bottom). There are four classes of the corn seed (Broken-B, Discolored-D, Silkcut-S, and Pure-P) 17802 images are labeled by the experts at the AdTech Corp. and 26K images were unlabeled out of which 9k images were labeled using the Active Learning (BatchBALD)
0 PAPER • NO BENCHMARKS YET
InfiniteRep is a synthetic, open-source dataset for fitness and physical therapy (PT) applications. It includes 1k videos of diverse avatars performing multiple repetitions of common exercises. It includes significant variation in the environment, lighting conditions, avatar demographics, and movement trajectories. From cadence to kinematic trajectory, each rep is done slightly differently -- just like real humans. InfiniteRep videos are accompanied by a rich set of pixel-perfect labels and annotations, including frame-specific repetition counts.