NTU RGB+D is a large-scale dataset for RGB-D human action recognition. It involves 56,880 samples of 60 action classes collected from 40 subjects. The actions can be generally divided into three categories: 40 daily actions (e.g., drinking, eating, reading), nine health-related actions (e.g., sneezing, staggering, falling down), and 11 mutual actions (e.g., punching, kicking, hugging). These actions take place under 17 different scene conditions corresponding to 17 video sequences (i.e., S001–S017). The actions were captured using three cameras with different horizontal imaging viewpoints, namely, −45∘,0∘, and +45∘. Multi-modality information is provided for action characterization, including depth maps, 3D skeleton joint position, RGB frames, and infrared sequences. The performance evaluation is performed by a cross-subject test that split the 40 subjects into training and test groups, and by a cross-view test that employed one camera (+45∘) for testing, and the other two cameras for
429 PAPERS
• 11 BENCHMARKS