The Breakfast Actions Dataset comprises of 10 actions related to breakfast preparation, performed by 52 different individuals in 18 different kitchens. The dataset is one of the largest fully annotated datasets available. The actions are recorded “in the wild” as opposed to a single controlled lab environment. It consists of over 77 hours of video recordings.
111 PAPERS • 3 BENCHMARKS
The Georgia Tech Egocentric Activities (GTEA) dataset contains seven types of daily activities such as making sandwich, tea, or coffee. Each activity is performed by four different people, thus totally 28 videos. For each video, there are about 20 fine-grained action instances such as take bread, pour ketchup, in approximately one minute.
80 PAPERS • 2 BENCHMARKS
The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) is a surgical activity dataset for human motion modeling. The data was collected through a collaboration between The Johns Hopkins University (JHU) and Intuitive Surgical, Inc. (Sunnyvale, CA. ISI) within an IRB-approved study. The release of this dataset has been approved by the Johns Hopkins University IRB. The dataset was captured using the da Vinci Surgical System from eight surgeons with different levels of skill performing five repetitions of three elementary surgical tasks on a bench-top model: suturing, knot-tying and needle-passing, which are standard components of most surgical skills training curricula. The JIGSAWS dataset consists of three components:
72 PAPERS • 3 BENCHMARKS
The COIN dataset (a large-scale dataset for COmprehensive INstructional video analysis) consists of 11,827 videos related to 180 different tasks in 12 domains (e.g., vehicles, gadgets, etc.) related to our daily life. The videos are all collected from YouTube. The average length of a video is 2.36 minutes. Each video is labelled with 3.91 step segments, where each segment lasts 14.91 seconds on average. In total, the dataset contains videos of 476 hours, with 46,354 annotated segments.
39 PAPERS • 1 BENCHMARK
Activity recognition research has shifted focus from distinguishing full-body motion patterns to recognizing complex interactions of multiple entities. Manipulative gestures – characterized by interactions between hands, tools, and manipulable objects – frequently occur in food preparation, manufacturing, and assembly tasks, and have a variety of applications including situational support, automated supervision, and skill assessment. With the aim to stimulate research on recognizing manipulative gestures we introduce the 50 Salads dataset. It captures 25 people preparing 2 mixed salads each and contains over 4h of annotated accelerometer and RGB-D video data. Including detailed annotations, multiple sensor types, and two sequences per participant, the 50 Salads dataset may be used for research in areas such as activity recognition, activity spotting, sequence analysis, progress tracking, sensor fusion, transfer learning, and user-adaptation.
21 PAPERS • 1 BENCHMARK
Assembly101 is a new procedural activity dataset featuring 4321 videos of people assembling and disassembling 101 "take-apart" toy vehicles. Participants work without fixed instructions, and the sequences feature rich and natural variations in action ordering, mistakes, and corrections. Assembly101 is the first multi-view action dataset, with simultaneous static (8) and egocentric (4) recordings. Sequences are annotated with more than 100K coarse and 1M fine-grained action segments, and 18M 3D hand poses. We benchmark on three action understanding tasks: recognition, anticipation and temporal segmentation. Additionally, we propose a novel task of detecting mistakes. The unique recording format and rich set of annotations allow us to investigate generalization to new toys, cross-view transfer, long-tailed distributions, and pose vs. appearance. We envision that Assembly101 will serve as a new challenge to investigate various activity understanding problems.
10 PAPERS • 3 BENCHMARKS
The Watch-n-Patch dataset was created with the focus on modeling human activities, comprising multiple actions in a completely unsupervised setting. It is collected with Microsoft Kinect One sensor for a total length of about 230 minutes, divided in 458 videos. 7 subjects perform human daily activities in 8 offices and 5 kitchens with complex backgrounds. Moreover, skeleton data are provided as ground truth annotations.
10 PAPERS • NO BENCHMARKS YET
The TUM Kitchen dataset is an action recognition dataset that contains 20 video sequences captured by 4 cameras with overlapping views. The camera network captures the scene from four viewpoints with 25 fps, and every RGB frame is of the resolution 384×288 by pixels. The action labels are frame-wise, and provided for the left arm, the right arm and the torso separately.
7 PAPERS • NO BENCHMARKS YET
A dataset which provides detailed annotations for activity recognition.
4 PAPERS • 1 BENCHMARK
A large-scale 4D egocentric dataset with rich annotations, to catalyze the research of category-level human-object interaction. HOI4D consists of 2.4M RGB-D egOCentric video frames over 4000 sequences collected by 4 participants interacting with 800 different object instances from 16 categories over 610 different indoor rooms.
2 PAPERS • NO BENCHMARKS YET
EgoProceL is a large-scale dataset for procedure learning. It consists of 62 hours of egocentric videos recorded by 130 subjects performing 16 tasks for procedure learning. EgoProceL contains videos and key-step annotations for multiple tasks from CMU-MMAC, EGTEA Gaze+, and individual tasks like toy-bike assembly, tent assembly, PC assembly, and PC disassembly. EgoProceL overcomes the limitations of third-person videos. As, using third-person videos makes the manipulated object small in appearance and often occluded by the actor, leading to significant errors. In contrast, we observe that videos obtained from first-person (egocentric) wearable cameras provide an unobstructed and clear view of the action.
1 PAPER • NO BENCHMARKS YET
LARa is the first freely accessible logistics-dataset for human activity recognition. In the ’Innovationlab Hybrid Services in Logistics’ at TU Dortmund University, two picking and one packing scenarios with 14 subjects were recorded using OMoCap, IMUs, and an RGB camera. 758 minutes of recordings were labeled by 12 annotators in 474 person-hours. The subsequent revision was carried out by 4 revisers in 143 person-hours. All the given data have been labeled and categorised into 8 activity classes and 19 binary coarse-semantic descriptions, also called attributes.
Comprises twenty individuals picking up and placing objects of varying weights to and from cabinet and table locations at various heights.