BraTS 2018 is a dataset which provides multimodal 3D brain MRIs and ground truth brain tumor segmentations annotated by physicians, consisting of 4 MRI modalities per case (T1, T1c, T2, and FLAIR). Annotations include 3 tumor subregions—the enhancing tumor, the peritumoral edema, and the necrotic and non-enhancing tumor core. The annotations were combined into 3 nested subregions—whole tumor (WT), tumor core (TC), and enhancing tumor (ET). The data were collected from 19 institutions, using various MRI scanners
113 PAPERS • 2 BENCHMARKS
The BRATS2017 dataset. It contains 285 brain tumor MRI scans, with four MRI modalities as T1, T1ce, T2, and Flair for each scan. The dataset also provides full masks for brain tumors, with labels for ED, ET, NET/NCR. The segmentation evaluation is based on three tasks: WT, TC and ET segmentation.
61 PAPERS • 1 BENCHMARK
The BraTS 2015 dataset is a dataset for brain tumor image segmentation. It consists of 220 high grade gliomas (HGG) and 54 low grade gliomas (LGG) MRIs. The four MRI modalities are T1, T1c, T2, and T2FLAIR. Segmented “ground truth” is provide about four intra-tumoral classes, viz. edema, enhancing tumor, non-enhancing tumor, and necrosis.
55 PAPERS • 1 BENCHMARK
BRATS 2013 is a brain tumor segmentation dataset consists of synthetic and real images, where each of them is further divided into high-grade gliomas (HG) and low-grade gliomas (LG). There are 25 patients with both synthetic HG and LG images and 20 patients with real HG and 10 patients with real LG images. For each patient, FLAIR, T1, T2, and post-Gadolinium T1 magnetic resonance (MR) image sequences are available.
30 PAPERS • 2 BENCHMARKS
BRATS 2014 is a brain tumor segmentation dataset.
5 PAPERS • 1 BENCHMARK