The MNIST database (Modified National Institute of Standards and Technology database) is a large collection of handwritten digits. It has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger NIST Special Database 3 (digits written by employees of the United States Census Bureau) and Special Database 1 (digits written by high school students) which contain monochrome images of handwritten digits. The digits have been size-normalized and centered in a fixed-size image. The original black and white (bilevel) images from NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing technique used by the normalization algorithm. the images were centered in a 28x28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
5,867 PAPERS • 49 BENCHMARKS
Street View House Numbers (SVHN) is a digit classification benchmark dataset that contains 600,000 32×32 RGB images of printed digits (from 0 to 9) cropped from pictures of house number plates. The cropped images are centered in the digit of interest, but nearby digits and other distractors are kept in the image. SVHN has three sets: training, testing sets and an extra set with 530,000 images that are less difficult and can be used for helping with the training process.
2,439 PAPERS • 11 BENCHMARKS
The HMDB51 dataset is a large collection of realistic videos from various sources, including movies and web videos. The dataset is composed of 6,766 video clips from 51 action categories (such as “jump”, “kiss” and “laugh”), with each category containing at least 101 clips. The original evaluation scheme uses three different training/testing splits. In each split, each action class has 70 clips for training and 30 clips for testing. The average accuracy over these three splits is used to measure the final performance.
632 PAPERS • 14 BENCHMARKS
Office-Home is a benchmark dataset for domain adaptation which contains 4 domains where each domain consists of 65 categories. The four domains are: Art – artistic images in the form of sketches, paintings, ornamentation, etc.; Clipart – collection of clipart images; Product – images of objects without a background and Real-World – images of objects captured with a regular camera. It contains 15,500 images, with an average of around 70 images per class and a maximum of 99 images in a class.
601 PAPERS • 9 BENCHMARKS
The Office dataset contains 31 object categories in three domains: Amazon, DSLR and Webcam. The 31 categories in the dataset consist of objects commonly encountered in office settings, such as keyboards, file cabinets, and laptops. The Amazon domain contains on average 90 images per class and 2817 images in total. As these images were captured from a website of online merchants, they are captured against clean background and at a unified scale. The DSLR domain contains 498 low-noise high resolution images (4288×2848). There are 5 objects per category. Each object was captured from different viewpoints on average 3 times. For Webcam, the 795 images of low resolution (640×480) exhibit significant noise and color as well as white balance artifacts.
458 PAPERS • 9 BENCHMARKS
The SYNTHIA dataset is a synthetic dataset that consists of 9400 multi-viewpoint photo-realistic frames rendered from a virtual city and comes with pixel-level semantic annotations for 13 classes. Each frame has resolution of 1280 × 960.
392 PAPERS • 9 BENCHMARKS
USPS is a digit dataset automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16 pixel grayscale samples; the images are centered, normalized and show a broad range of font styles.
346 PAPERS • 4 BENCHMARKS
The GTA5 dataset contains 24966 synthetic images with pixel level semantic annotation. The images have been rendered using the open-world video game Grand Theft Auto 5 and are all from the car perspective in the streets of American-style virtual cities. There are 19 semantic classes which are compatible with the ones of Cityscapes dataset.
301 PAPERS • 7 BENCHMARKS
The German Traffic Sign Recognition Benchmark (GTSRB) contains 43 classes of traffic signs, split into 39,209 training images and 12,630 test images. The images have varying light conditions and rich backgrounds.
235 PAPERS • 3 BENCHMARKS
OpenSubtitles is collection of multilingual parallel corpora. The dataset is compiled from a large database of movie and TV subtitles and includes a total of 1689 bitexts spanning 2.6 billion sentences across 60 languages.
187 PAPERS • 1 BENCHMARK
Datasets drive vision progress, yet existing driving datasets are impoverished in terms of visual content and supported tasks to study multitask learning for autonomous driving. Researchers are usually constrained to study a small set of problems on one dataset, while real-world computer vision applications require performing tasks of various complexities. We construct BDD100K, the largest driving video dataset with 100K videos and 10 tasks to evaluate the exciting progress of image recognition algorithms on autonomous driving. The dataset possesses geographic, environmental, and weather diversity, which is useful for training models that are less likely to be surprised by new conditions. Based on this diverse dataset, we build a benchmark for heterogeneous multitask learning and study how to solve the tasks together. Our experiments show that special training strategies are needed for existing models to perform such heterogeneous tasks. BDD100K opens the door for future studies in thi
162 PAPERS • 13 BENCHMARKS
MNIST-M is created by combining MNIST digits with the patches randomly extracted from color photos of BSDS500 as their background. It contains 59,001 training and 90,001 test images.
157 PAPERS • 1 BENCHMARK
VisDA-2017 is a simulation-to-real dataset for domain adaptation with over 280,000 images across 12 categories in the training, validation and testing domains. The training images are generated from the same object under different circumstances, while the validation images are collected from MSCOCO..
143 PAPERS • 3 BENCHMARKS
The Replica Dataset is a dataset of high quality reconstructions of a variety of indoor spaces. Each reconstruction has clean dense geometry, high resolution and high dynamic range textures, glass and mirror surface information, planar segmentation as well as semantic class and instance segmentation.
119 PAPERS • 2 BENCHMARKS
ImageNet-Sketch data set consists of 50000 images, 50 images for each of the 1000 ImageNet classes. The data set is constructed with Google Image queries "sketch of ", where is the standard class name. Only within the "black and white" color scheme is searched. 100 images are initially queried for every class, and the pulled images are cleaned by deleting the irrelevant images and images that are for similar but different classes. For some classes, there are less than 50 images after manually cleaning, and then the data set is augmented by flipping and rotating the images.
89 PAPERS • 3 BENCHMARKS
The ImageCLEF-DA dataset is a benchmark dataset for ImageCLEF 2014 domain adaptation challenge, which contains three domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). For each domain, there are 12 categories and 50 images in each category.
85 PAPERS • 6 BENCHMARKS
ASPEC, Asian Scientific Paper Excerpt Corpus, is constructed by the Japan Science and Technology Agency (JST) in collaboration with the National Institute of Information and Communications Technology (NICT). It consists of a Japanese-English paper abstract corpus of 3M parallel sentences (ASPEC-JE) and a Japanese-Chinese paper excerpt corpus of 680K parallel sentences (ASPEC-JC). This corpus is one of the achievements of the Japanese-Chinese machine translation project which was run in Japan from 2006 to 2010.
83 PAPERS • NO BENCHMARKS YET
The VGG Face dataset is face identity recognition dataset that consists of 2,622 identities. It contains over 2.6 million images.
81 PAPERS • NO BENCHMARKS YET
Freesound Dataset 50k (or FSD50K for short) is an open dataset of human-labeled sound events containing 51,197 Freesound clips unequally distributed in 200 classes drawn from the AudioSet Ontology. FSD50K has been created at the Music Technology Group of Universitat Pompeu Fabra. It consists mainly of sound events produced by physical sound sources and production mechanisms, including human sounds, sounds of things, animals, natural sounds, musical instruments and more.
68 PAPERS • 2 BENCHMARKS
IDD is a dataset for road scene understanding in unstructured environments used for semantic segmentation and object detection for autonomous driving. It consists of 10,004 images, finely annotated with 34 classes collected from 182 drive sequences on Indian roads.
64 PAPERS • NO BENCHMARKS YET
The Machine Translation of Noisy Text (MTNT) dataset is a Machine Translation dataset that consists of noisy comments on Reddit and professionally sourced translation. The translation are between French, Japanese and French, with between 7k and 37k sentence per language pair.
46 PAPERS • NO BENCHMARKS YET
Synscapes is a synthetic dataset for street scene parsing created using photorealistic rendering techniques, and show state-of-the-art results for training and validation as well as new types of analysis.
34 PAPERS • 1 BENCHMARK
AVD focuses on simulating robotic vision tasks in everyday indoor environments using real imagery. The dataset includes 20,000+ RGB-D images and 50,000+ 2D bounding boxes of object instances densely captured in 9 unique scenes.
26 PAPERS • 1 BENCHMARK
This dataset contains product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 - July 2014.
25 PAPERS • 6 BENCHMARKS
VIDIT is a reference evaluation benchmark and to push forward the development of illumination manipulation methods. VIDIT includes 390 different Unreal Engine scenes, each captured with 40 illumination settings, resulting in 15,600 images. The illumination settings are all the combinations of 5 color temperatures (2500K, 3500K, 4500K, 5500K and 6500K) and 8 light directions (N, NE, E, SE, S, SW, W, NW). Original image resolution is 1024x1024.
20 PAPERS • 1 BENCHMARK
Japanese-English Subtitle Corpus is a large Japanese-English parallel corpus covering the underrepresented domain of conversational dialogue. It consists of more than 3.2 million examples, making it the largest freely available dataset of its kind. The corpus was assembled by crawling and aligning subtitles found on the web.
15 PAPERS • NO BENCHMARKS YET
This is a document grounded dataset for text conversations. "Document Grounded Conversations" are conversations that are about the contents of a specified document. In this dataset the specified documents are Wikipedia articles about popular movies. The dataset contains 4112 conversations with an average of 21.43 turns per conversation.
14 PAPERS • NO BENCHMARKS YET
VehicleX is a large-scale synthetic dataset. Created in Unity, it contains 1,362 vehicles of various 3D models with fully editable attributes.
Animal-Pose Dataset is an animal pose dataset to facilitate training and evaluation. This dataset provides animal pose annotations on five categories are provided: dog, cat, cow, horse, sheep, with in total 6,000+ instances in 4,000+ images. Besides, the dataset also contains bounding box annotations for other 7 animal categories.
13 PAPERS • NO BENCHMARKS YET
KdConv is a Chinese multi-domain Knowledge-driven Conversation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation.
We introduce ACDC, the Adverse Conditions Dataset with Correspondences for training and testing semantic segmentation methods on adverse visual conditions. It comprises a large set of 4006 images which are evenly distributed between fog, nighttime, rain, and snow. Each adverse-condition image comes with a high-quality fine pixel-level semantic annotation, a corresponding image of the same scene taken under normal conditions and a binary mask that distinguishes between intra-image regions of clear and uncertain semantic content.
12 PAPERS • 2 BENCHMARKS
5987 high spatial resolution (0.3 m) remote sensing images from Nanjing, Changzhou, and Wuhan Focus on different geographical environments between Urban and Rural Advance both semantic segmentation and domain adaptation tasks Three considerable challenges: Multi-scale objects Complex background samples Inconsistent class distributions
12 PAPERS • 1 BENCHMARK
The Multilingual Reuters Collection dataset comprises over 11,000 articles from six classes in five languages, i.e., English (E), French (F), German (G), Italian (I), and Spanish (S).
TECHQA is a domain-adaptation question answering dataset for the technical support domain. The TECHQA corpus highlights two real-world issues from the automated customer support domain. First, it contains actual questions posed by users on a technical forum, rather than questions generated specifically for a competition or a task. Second, it has a real-world size – 600 training, 310 dev, and 490 evaluation question/answer pairs – thus reflecting the cost of creating large labeled datasets with actual data. Consequently, TECHQA is meant to stimulate research in domain adaptation rather than being a resource to build QA systems from scratch. The dataset was obtained by crawling the IBM Developer and IBM DeveloperWorks forums for questions with accepted answers that appear in a published IBM Technote—a technical document that addresses a specific technical issue.
11 PAPERS • NO BENCHMARKS YET
So2Sat LCZ42 consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months.
10 PAPERS • 1 BENCHMARK
REFUGE Challenge provides a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one.
9 PAPERS • 5 BENCHMARKS
Office-Caltech-10 a standard benchmark for domain adaptation, which consists of Office 10 and Caltech 10 datasets. It contains the 10 overlapping categories between the Office dataset and Caltech256 dataset. SURF BoW historgram features, vector quantized to 800 dimensions are also available for this dataset.
8 PAPERS • 1 BENCHMARK
CASIA V2 is a dataset for forgery classification. It contains 4795 images, 1701 authentic and 3274 forged.
7 PAPERS • NO BENCHMARKS YET
The Cross-dataset Testbed is a Decaf7 based cross-dataset image classification dataset, which contains 40 categories of images from 3 domains: 3,847 images in Caltech256, 4,000 images in ImageNet, and 2,626 images for SUN. In total there are 10,473 images of 40 categories from these three domains.
Adaptiope is a domain adaptation dataset with 123 classes in the three domains synthetic, product and real life. One of the main goals of Adaptiope is to offer a clean and well curated set of images for domain adaptation. This was necessary as many other common datasets in the area suffer from label noise and low quality images. Additionally, Adaptiope's class set was chosen in a way that minimizes the overlap with the class set of the commonly used ImageNet pretraining, therefore preventing information leakage in a domain adaptation setup.
6 PAPERS • NO BENCHMARKS YET
CrossNER is a cross-domain NER (Named Entity Recognition) dataset, a fully-labeled collection of NER data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five domains.
Mindboggle is a large publicly available dataset of manually labeled brain MRI. It consists of 101 subjects collected from different sites, with cortical meshes varying from 102K to 185K vertices. Each brain surface contains 25 or 31 manually labeled parcels.
Perspectrum is a dataset of claims, perspectives and evidence, making use of online debate websites to create the initial data collection, and augmenting it using search engines in order to expand and diversify the dataset. Crowd-sourcing was used to filter out noise and ensure high-quality data. The dataset contains 1k claims, accompanied with pools of 10k and 8k perspective sentences and evidence paragraphs, respectively.
Under a close collaboration with an expert radiologist team of the Hospital Universitario San Cecilio, the COVIDGR-1.0 dataset of patients' anonymized X-ray images has been built. 852 images have been collected following a strict labeling protocol. They are categorized into 426 positive cases and 426 negative cases. Positive images correspond to patients who have been tested positive for COVID-19 using RT-PCR within a time span of at most 24h between the X-ray image and the test. Every image has been taken using the same type of equipment and with the same format: only the posterior-anterior view is considered.
5 PAPERS • NO BENCHMARKS YET
CocoDoom is a collection of pre-recorded data extracted from Doom gaming sessions along with annotations in the MS Coco format.
4 PAPERS • NO BENCHMARKS YET
Modern Office-31 is a refurbished version of the commonly used Office-31 dataset. Modern Office-31 rectifies many of the annotation errors and low quality images in the Amazon domain of the original Office-31 dataset. Additionally, this dataset adds another synthetic domain based on the Adaptiope dataset.
This dataset contains 114 individuals including 1824 images captured from two disjoint camera views. For each person, eight images are captured from eight different orientations under one camera view and are normalized to 128x48 pixels. This dataset is also split into two parts randomly. One contains 57 individuals for training, and the other contains 57 individuals for testing.
3 PAPERS • 1 BENCHMARK
The Sims4Action Dataset: a videogame-based dataset for Synthetic→Real domain adaptation for human activity recognition.
3 PAPERS • NO BENCHMARKS YET