The MS-Celeb-1M dataset is a large-scale face recognition dataset consists of 100K identities, and each identity has about 100 facial images. The original identity labels are obtained automatically from webpages.
255 PAPERS • NO BENCHMARKS YET
MegaFace was a publicly available dataset which is used for evaluating the performance of face recognition algorithms with up to a million distractors (i.e., up to a million people who are not in the test set). MegaFace contains 1M images from 690K individuals with unconstrained pose, expression, lighting, and exposure. MegaFace captures many different subjects rather than many images of a small number of subjects. The gallery set of MegaFace is collected from a subset of Flickr. The probe set of MegaFace used in the challenge consists of two databases; Facescrub and FGNet. FGNet contains 975 images of 82 individuals, each with several images spanning ages from 0 to 69. Facescrub dataset contains more than 100K face images of 530 people. The MegaFace challenge evaluates performance of face recognition algorithms by increasing the numbers of “distractors” (going from 10 to 1M) in the gallery set. In order to evaluate the face recognition algorithms fairly, MegaFace challenge has two pro
210 PAPERS • 3 BENCHMARKS
The IJB-B dataset is a template-based face dataset that contains 1845 subjects with 11,754 images, 55,025 frames and 7,011 videos where a template consists of a varying number of still images and video frames from different sources. These images and videos are collected from the Internet and are totally unconstrained, with large variations in pose, illumination, image quality etc. In addition, the dataset comes with protocols for 1-to-1 template-based face verification, 1-to-N template-based open-set face identification, and 1-to-N open-set video face identification.
158 PAPERS • 5 BENCHMARKS
The IARPA Janus Benchmark A (IJB-A) database is developed with the aim to augment more challenges to the face recognition task by collecting facial images with a wide variations in pose, illumination, expression, resolution and occlusion. IJB-A is constructed by collecting 5,712 images and 2,085 videos from 500 identities, with an average of 11.4 images and 4.2 videos per identity.
156 PAPERS • 2 BENCHMARKS
Drone Surveillance of Faces, is a large-scale drone dataset intended to facilitate research for face recognition using drones.
5 PAPERS • 1 BENCHMARK
Dataset originally conceived for multi-face tracking/detection for highly crowded scenarios. In these scenarios, the face is the only part that can be used to track the individuals.
1 PAPER • NO BENCHMARKS YET
PetFace is a large-scale animal face re-identification dataset that includes 257,484 unique individuals across 13 families and 319 breeds. PetFace has fine-grained annotation (sex, breeds, color, and patterns).