MoleculeNet is a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance.
126 PAPERS • 1 BENCHMARK
QM9 provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships.
44 PAPERS • 5 BENCHMARKS
The Tox21 data set comprises 12,060 training samples and 647 test samples that represent chemical compounds. There are 801 "dense features" that represent chemical descriptors, such as molecular weight, solubility or surface area, and 272,776 "sparse features" that represent chemical substructures (ECFP10, DFS6, DFS8; stored in Matrix Market Format ). Machine learning methods can either use sparse or dense data or combine them. For each sample there are 12 binary labels that represent the outcome (active/inactive) of 12 different toxicological experiments. Note that the label matrix contains many missing values (NAs). The original data source and Tox21 challenge site is https://tripod.nih.gov/tox21/challenge/.
23 PAPERS • 5 BENCHMARKS
The AIDS Antiviral Screen dataset is a dataset of screens checking tens of thousands of compounds for evidence of anti-HIV activity. The available screen results are chemical graph-structured data of these various compounds.
14 PAPERS • 3 BENCHMARKS
SIDER contains information on marketed medicines and their recorded adverse drug reactions. The information is extracted from public documents and package inserts. The available information include side effect frequency, drug and side effect classifications as well as links to further information, for example drug–target relations.
13 PAPERS • 4 BENCHMARKS
Molecule3D is a new benchmark that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from density functional theory (DFT). It also provides a set of software tools for data processing, splitting, training, and evaluation, etc.
8 PAPERS • 2 BENCHMARKS
A benchmark for molecular machine learning where improvements in model performance can be immediately observed in the throughput of promising molecules synthesized in the lab. Photoswitches are a versatile class of molecule for medical and renewable energy applications where a molecule's efficacy is governed by its electronic transition wavelengths.
3 PAPERS • NO BENCHMARKS YET
A.2.1 AN OPEN, LARGE-SCALE DATASET FOR ZERO-SHOT DRUG DISCOVERY DERIVED FROM PUBCHEM We constructed a large public dataset extracted from PubChem (Kim et al., 2019; Preuer et al., 2018), an open chemistry database, and the largest collection of readily available chemical data. We take assays ranging from 2004 to 2018-05. It initially comprises 224,290,250 records of molecule-bioassay activity, corresponding to 2,120,854 unique molecules and 21,003 unique bioassays. We find that some molecule-bioassay pairs have multiple activity records, which may not all agree. We reduce every molecule-bioassay pair to exactly one activity measurement by applying majority voting. Molecule-bioassay pairs with ties are discarded. This step yields our final bioactivity dataset, which features 223,219,241 records of molecule-bioassay activity, corresponding to 2,120,811 unique molecules and 21,002 unique bioassays ranging from AID 1 to AID 1259411. Molecules range up to CID 132472079. The dataset has 3 di
1 PAPER • NO BENCHMARKS YET