The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The images are labelled with one of 10 mutually exclusive classes: airplane, automobile (but not truck or pickup truck), bird, cat, deer, dog, frog, horse, ship, and truck (but not pickup truck). There are 6000 images per class with 5000 training and 1000 testing images per class.
14,922 PAPERS • 106 BENCHMARKS
The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.
14,196 PAPERS • 43 BENCHMARKS
The CIFAR-100 dataset (Canadian Institute for Advanced Research, 100 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. There are 600 images per class. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). There are 500 training images and 100 testing images per class.
8,209 PAPERS • 55 BENCHMARKS
The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset is the most widely-used dataset for fine-grained visual categorization task. It contains 11,788 images of 200 subcategories belonging to birds, 5,994 for training and 5,794 for testing. Each image has detailed annotations: 1 subcategory label, 15 part locations, 312 binary attributes and 1 bounding box. The textual information comes from Reed et al.. They expand the CUB-200-2011 dataset by collecting fine-grained natural language descriptions. Ten single-sentence descriptions are collected for each image. The natural language descriptions are collected through the Amazon Mechanical Turk (AMT) platform, and are required at least 10 words, without any information of subcategories and actions.
2,105 PAPERS • 49 BENCHMARKS
UCF101 dataset is an extension of UCF50 and consists of 13,320 video clips, which are classified into 101 categories. These 101 categories can be classified into 5 types (Body motion, Human-human interactions, Human-object interactions, Playing musical instruments and Sports). The total length of these video clips is over 27 hours. All the videos are collected from YouTube and have a fixed frame rate of 25 FPS with the resolution of 320 × 240.
1,715 PAPERS • 25 BENCHMARKS
Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flowers chosen to be flower commonly occurring in the United Kingdom. Each class consists of between 40 and 258 images.
1,152 PAPERS • 17 BENCHMARKS
The Describable Textures Dataset (DTD) contains 5640 texture images in the wild. They are annotated with human-centric attributes inspired by the perceptual properties of textures.
723 PAPERS • 7 BENCHMARKS
The Stanford Cars dataset consists of 196 classes of cars with a total of 16,185 images, taken from the rear. The data is divided into almost a 50-50 train/test split with 8,144 training images and 8,041 testing images. Categories are typically at the level of Make, Model, Year. The images are 360×240.
704 PAPERS • 13 BENCHMARKS
The Food-101 dataset consists of 101 food categories with 750 training and 250 test images per category, making a total of 101k images. The labels for the test images have been manually cleaned, while the training set contains some noise.
672 PAPERS • 13 BENCHMARKS
The Caltech101 dataset contains images from 101 object categories (e.g., “helicopter”, “elephant” and “chair” etc.) and a background category that contains the images not from the 101 object categories. For each object category, there are about 40 to 800 images, while most classes have about 50 images. The resolution of the image is roughly about 300×200 pixels.
628 PAPERS • 10 BENCHMARKS
Eurosat is a dataset and deep learning benchmark for land use and land cover classification. The dataset is based on Sentinel-2 satellite images covering 13 spectral bands and consisting out of 10 classes with in total 27,000 labeled and geo-referenced images.
540 PAPERS • 7 BENCHMARKS
FGVC-Aircraft contains 10,200 images of aircraft, with 100 images for each of 102 different aircraft model variants, most of which are airplanes. The (main) aircraft in each image is annotated with a tight bounding box and a hierarchical airplane model label. Aircraft models are organized in a four-levels hierarchy. The four levels, from finer to coarser, are:
460 PAPERS • 11 BENCHMARKS
The Oxford-IIIT Pet Dataset is a 37-category pet dataset with roughly 200 images for each class. The images have large variations in scale, pose, and lighting. All images have an associated ground truth annotation of breed, head ROI, and pixel-level trimap segmentation.
45 PAPERS • 10 BENCHMARKS
The Scene UNderstanding (SUN) database contains 899 categories and 130,519 images. There are 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition.
37 PAPERS • 8 BENCHMARKS