CoNLL-2003 is a named entity recognition dataset released as a part of CoNLL-2003 shared task: language-independent named entity recognition. The data consists of eight files covering two languages: English and German. For each of the languages there is a training file, a development file, a test file and a large file with unannotated data.
750 PAPERS • 19 BENCHMARKS
The New York Times Annotated Corpus contains over 1.8 million articles written and published by the New York Times between January 1, 1987 and June 19, 2007 with article metadata provided by the New York Times Newsroom, the New York Times Indexing Service and the online production staff at nytimes.com. The corpus includes:
261 PAPERS • 9 BENCHMARKS
OntoNotes 5.0 is a large corpus comprising various genres of text (news, conversational telephone speech, weblogs, usenet newsgroups, broadcast, talk shows) in three languages (English, Chinese, and Arabic) with structural information (syntax and predicate argument structure) and shallow semantics (word sense linked to an ontology and coreference).
253 PAPERS • 13 BENCHMARKS
BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions.
189 PAPERS • 7 BENCHMARKS
The NCBI Disease corpus consists of 793 PubMed abstracts, which are separated into training (593), development (100) and test (100) subsets. The NCBI Disease corpus is annotated with disease mentions, using concept identifiers from either MeSH or OMIM.
154 PAPERS • 4 BENCHMARKS
SciERC dataset is a collection of 500 scientific abstract annotated with scientific entities, their relations, and coreference clusters. The abstracts are taken from 12 AI conference/workshop proceedings in four AI communities, from the Semantic Scholar Corpus. SciERC extends previous datasets in scientific articles SemEval 2017 Task 10 and SemEval 2018 Task 7 by extending entity types, relation types, relation coverage, and adding cross-sentence relations using coreference links.
133 PAPERS • 8 BENCHMARKS
This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarisation), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet “so.. kktny in 30 mins?” - even human experts find entity kktny hard to detect and resolve. This task will evaluate the ability to detect and classify novel, emerging, singleton named entities in noisy text.
125 PAPERS • 2 BENCHMARKS
The GENIA corpus is the primary collection of biomedical literature compiled and annotated within the scope of the GENIA project. The corpus was created to support the development and evaluation of information extraction and text mining systems for the domain of molecular biology.
120 PAPERS • 7 BENCHMARKS
WikiANN, also known as PAN-X, is a multilingual named entity recognition dataset. It consists of Wikipedia articles that have been annotated with LOC (location), PER (person), and ORG (organization) tags in the IOB2 format¹². This dataset serves as a valuable resource for training and evaluating named entity recognition models across various languages.
69 PAPERS • 4 BENCHMARKS
ACE 2004 Multilingual Training Corpus contains the complete set of English, Arabic and Chinese training data for the 2004 Automatic Content Extraction (ACE) technology evaluation. The corpus consists of data of various types annotated for entities and relations and was created by Linguistic Data Consortium with support from the ACE Program, with additional assistance from the DARPA TIDES (Translingual Information Detection, Extraction and Summarization) Program. The objective of the ACE program is to develop automatic content extraction technology to support automatic processing of human language in text form. In September 2004, sites were evaluated on system performance in six areas: Entity Detection and Recognition (EDR), Entity Mention Detection (EMD), EDR Co-reference, Relation Detection and Recognition (RDR), Relation Mention Detection (RMD), and RDR given reference entities. All tasks were evaluated in three languages: English, Chinese and Arabic.
51 PAPERS • 6 BENCHMARKS
Created by Smith et al. at 2008, the BioCreative II Gene Mention Recognition (BC2GM) Dataset contains data where participants are asked to identify a gene mention in a sentence by giving its start and end characters. The training set consists of a set of sentences, and for each sentence a set of gene mentions (GENE annotations). [registration required for access], in English language. Containing 20 in n/a file format.
13 PAPERS • 2 BENCHMARKS
The first NER dataset in the field of traffic, which is to extract the characteristics and attributes of the vehicle on the road.
4 PAPERS • 2 BENCHMARKS
Underwater Image Enhancement Dataset
0 PAPER • NO BENCHMARKS YET