Feature Pyramid Blocks

A BiFPN, or Weighted Bi-directional Feature Pyramid Network, is a type of feature pyramid network which allows easy and fast multi-scale feature fusion. It incorporates the multi-level feature fusion idea from FPN, PANet and NAS-FPN that enables information to flow in both the top-down and bottom-up directions, while using regular and efficient connections. It also utilizes a fast normalized fusion technique. Traditional approaches usually treat all features input to the FPN equally, even those with different resolutions. However, input features at different resolutions often have unequal contributions to the output features. Thus, the BiFPN adds an additional weight for each input feature allowing the network to learn the importance of each. All regular convolutions are also replaced with less expensive depthwise separable convolutions.

Comparing with PANet, PANet added an extra bottom-up path for information flow at the expense of more computational cost. Whereas BiFPN optimizes these cross-scale connections by removing nodes with a single input edge, adding an extra edge from the original input to output node if they are on the same level, and treating each bidirectional path as one feature network layer (repeating it several times for more high-level future fusion).

Source: EfficientDet: Scalable and Efficient Object Detection

Papers


Paper Code Results Date Stars

Categories