GAN Least Squares Loss is a least squares loss function for generative adversarial networks. Minimizing this objective function is equivalent to minimizing the Pearson $\chi^{2}$ divergence. The objective function (here for LSGAN) can be defined as:
$$ \min_{D}V_{LS}\left(D\right) = \frac{1}{2}\mathbb{E}_{\mathbf{x} \sim p_{data}\left(\mathbf{x}\right)}\left[\left(D\left(\mathbf{x}\right) - b\right)^{2}\right] + \frac{1}{2}\mathbb{E}_{\mathbf{z}\sim p_{data}\left(\mathbf{z}\right)}\left[\left(D\left(G\left(\mathbf{z}\right)\right) - a\right)^{2}\right] $$
$$ \min_{G}V_{LS}\left(G\right) = \frac{1}{2}\mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}\left(\mathbf{z}\right)}\left[\left(D\left(G\left(\mathbf{z}\right)\right) - c\right)^{2}\right] $$
where $a$ and $b$ are the labels for fake data and real data and $c$ denotes the value that $G$ wants $D$ to believe for fake data.
Source: Least Squares Generative Adversarial NetworksPaper | Code | Results | Date | Stars |
---|
Task | Papers | Share |
---|---|---|
Image-to-Image Translation | 73 | 13.88% |
Image Generation | 34 | 6.46% |
Domain Adaptation | 32 | 6.08% |
Semantic Segmentation | 23 | 4.37% |
Style Transfer | 20 | 3.80% |
Image Segmentation | 12 | 2.28% |
Super-Resolution | 12 | 2.28% |
Object Detection | 11 | 2.09% |
Test | 11 | 2.09% |
Component | Type |
|
---|---|---|
🤖 No Components Found | You can add them if they exist; e.g. Mask R-CNN uses RoIAlign |