Image Data Augmentation

Greedy Policy Search

Introduced by Molchanov et al. in Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation

Greedy Policy Search (GPS) is a simple algorithm that learns a policy for test-time data augmentation based on the predictive performance on a validation set. GPS starts with an empty policy and builds it in an iterative fashion. Each step selects a sub-policy that provides the largest improvement in calibrated log-likelihood of ensemble predictions and adds it to the current policy.

Source: Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation

Papers


Paper Code Results Date Stars

Tasks


Task Papers Share
Autonomous Driving 19 3.37%
Management 16 2.84%
Uncertainty Quantification 16 2.84%
Autonomous Vehicles 16 2.84%
Decision Making 14 2.49%
Object Detection 14 2.49%
Bayesian Optimization 11 1.95%
Pose Estimation 10 1.78%
geo-localization 10 1.78%

Components


Component Type
🤖 No Components Found You can add them if they exist; e.g. Mask R-CNN uses RoIAlign

Categories