Poincaré Embeddings learn hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an $n$-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows for learning of parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. Embeddings are learnt based on Riemannian optimization.
Source: Poincaré Embeddings for Learning Hierarchical RepresentationsPaper | Code | Results | Date | Stars |
---|
Component | Type |
|
---|---|---|
🤖 No Components Found | You can add them if they exist; e.g. Mask R-CNN uses RoIAlign |