Variational Optimization

Residual Normal Distribution

Introduced by Vahdat et al. in NVAE: A Deep Hierarchical Variational Autoencoder

Residual Normal Distributions are used to help the optimization of VAEs, preventing optimization from entering an unstable region. This can happen due to sharp gradients caused in situations where the encoder and decoder produce distributions far away from each other. The residual distribution parameterizes $q\left(\mathbf{z}|\mathbf{x}\right)$ relative to $p\left(\mathbf{z}\right)$. Let $p\left(z^{i}_{l}|\mathbf{z}_{<l}\right) := N \left(\mu_{i}\left(\mathbf{z}_{<l}\right), \sigma_{i}\left(\mathbf{z}_{<l}\right)\right)$ be a Normal distribution for the $i$th variable in $\mathbf{z}_{l}$ in prior. Define $q\left(z^{i}_{l}|\mathbf{z}_{<l}, x\right) := N\left(\mu_{i}\left(\mathbf{z}_{<l}\right) + \Delta\mu_{i}\left(\mathbf{z}_{<l}, x\right), \sigma_{i}\left(\mathbf{z}_{<l}\right) \cdot \Delta\sigma_{i}\left(\mathbf{z}_{<l}, x\right) \right)$, where $\Delta\mu_{i}\left(\mathbf{z}_{<l}, \mathbf{x}\right)$ and $\Delta\sigma_{i}\left(\mathbf{z}_{<l}, \mathbf{x}\right)$ are the relative location and scale of the approximate posterior with respect to the prior. With this parameterization, when the prior moves, the approximate posterior moves accordingly, if not changed.

Source: NVAE: A Deep Hierarchical Variational Autoencoder

Papers


Paper Code Results Date Stars

Tasks


Task Papers Share
Image Generation 2 33.33%
Adversarial Attack 1 16.67%
Anomaly Detection 1 16.67%
Time Series Analysis 1 16.67%
Time Series Anomaly Detection 1 16.67%

Components


Component Type
🤖 No Components Found You can add them if they exist; e.g. Mask R-CNN uses RoIAlign

Categories