Graph Embeddings

RotatE is a method for generating graph embeddings which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. The RotatE model is trained using a self-adversarial negative sampling technique.

Source: RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space


Paper Code Results Date Stars