Image Model Blocks

Squeeze-and-Excitation Block

Introduced by Hu et al. in Squeeze-and-Excitation Networks

The Squeeze-and-Excitation Block is an architectural unit designed to improve the representational power of a network by enabling it to perform dynamic channel-wise feature recalibration. The process is:

  • The block has a convolutional block as an input.
  • Each channel is "squeezed" into a single numeric value using average pooling.
  • A dense layer followed by a ReLU adds non-linearity and output channel complexity is reduced by a ratio.
  • Another dense layer followed by a sigmoid gives each channel a smooth gating function.
  • Finally, we weight each feature map of the convolutional block based on the side network; the "excitation".
Source: Squeeze-and-Excitation Networks

Papers


Paper Code Results Date Stars

Tasks


Task Papers Share
Image Classification 109 11.90%
Object Detection 45 4.91%
Classification 42 4.59%
Semantic Segmentation 40 4.37%
General Classification 27 2.95%
Deep Learning 23 2.51%
Decoder 19 2.07%
Instance Segmentation 16 1.75%
Quantization 14 1.53%

Categories