Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery

24 Nov 2017  ·  Ahmad W. Bitar, Loong-Fah Cheong, Jean-Philippe Ovarlez ·

Given a target prior information, our goal is to propose a method for automatically separating targets of interests from the background in hyperspectral imagery. More precisely, we regard the given hyperspectral image (HSI) as being made up of the sum of low-rank background HSI and a sparse target HSI that contains the targets based on a pre-learned target dictionary constructed from some online spectral libraries. Based on the proposed method, two strategies are briefly outlined and evaluated to realize the target detection on both synthetic and real experiments.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here