On an extension of the promotion time cure model

4 Jun 2018François PortierIngrid Van KeilegomAnouar El Ghouch

We consider the problem of estimating the distribution of time-to-event data that are subject to censoring and for which the event of interest might never occur, i.e., some subjects are cured. To model this kind of data in the presence of covariates, one of the leading semiparametric models is the promotion time cure model \citep{yakovlev1996}, which adapts the Cox model to the presence of cured subjects... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet