Paper

GA Based Q-Attack on Community Detection

Community detection plays an important role in social networks, since it can help to naturally divide the network into smaller parts so as to simplify network analysis. However, on the other hand, it arises the concern that individual information may be over-mined, and the concept community deception thus is proposed to protect individual privacy on social networks. Here, we introduce and formalize the problem of community detection attack and develop efficient strategies to attack community detection algorithms by rewiring a small number of connections, leading to individual privacy protection. In particular, we first give two heuristic attack strategies, i.e., Community Detection Attack (CDA) and Degree Based Attack (DBA), as baselines, utilizing the information of detected community structure and node degree, respectively. And then we propose a Genetic Algorithm (GA) based Q-Attack, where the modularity Q is used to design the fitness function. We launch community detection attack based on the above three strategies against three modularity based community detection algorithms on two social networks. By comparison, our Q-Attack method achieves much better attack effects than CDA and DBA, in terms of the larger reduction of both modularity Q and Normalized Mutual Information (NMI). Besides, we find that the adversarial networks obtained by Q-Attack on a specific community detection algorithm can be still effective on others, no matter whether they are modularity based or not, indicating its strong transferability.

Results in Papers With Code
(↓ scroll down to see all results)