Batched Sparse Matrix Multiplication for Accelerating Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are recently getting much attention in bioinformatics and chemoinformatics as a state-of-the-art machine learning approach with high accuracy. GCNs process convolutional operations along with graph structures, and GPUs are used to process enormous operations including sparse-dense matrix multiplication (SpMM) when the graph structure is expressed as an adjacency matrix with sparse matrix format... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet