TIGS: An Inference Algorithm for Text Infilling with Gradient Search

ACL 2019  ·  Dayiheng Liu, Jie Fu, PengFei Liu, Jiancheng Lv ·

Text infilling is defined as a task for filling in the missing part of a sentence or paragraph, which is suitable for many real-world natural language generation scenarios. However, given a well-trained sequential generative model, generating missing symbols conditioned on the context is challenging for existing greedy approximate inference algorithms. In this paper, we propose an iterative inference algorithm based on gradient search, which is the first inference algorithm that can be broadly applied to any neural sequence generative models for text infilling tasks. We compare the proposed method with strong baselines on three text infilling tasks with various mask ratios and different mask strategies. The results show that our proposed method is effective and efficient for fill-in-the-blank tasks, consistently outperforming all baselines.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here