Accelerating Physics-Based Simulations Using Neural Network Proxies: An Application in Oil Reservoir Modeling

23 May 2019  ·  Jiri Navratil, Alan King, Jesus Rios, Georgios Kollias, Ruben Torrado, Andres Codas ·

We develop a proxy model based on deep learning methods to accelerate the simulations of oil reservoirs--by three orders of magnitude--compared to industry-strength physics-based PDE solvers. This paper describes a new architectural approach to this task, accompanied by a thorough experimental evaluation on a publicly available reservoir model. We demonstrate that in a practical setting a speedup of more than 2000X can be achieved with an average sequence error of about 10\% relative to the oil-field simulator. The proxy model is contrasted with a high-quality physics-based acceleration baseline and is shown to outperform it by several orders of magnitude. We believe the outcomes presented here are extremely promising and offer a valuable benchmark for continuing research in oil field development optimization. Due to its domain-agnostic architecture, the presented approach can be extended to many applications beyond the field of oil and gas exploration.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here