Adaptive Structure-constrained Robust Latent Low-Rank Coding for Image Recovery

21 Aug 2019  ·  Zhao Zhang, Lei Wang, Sheng Li, Yang Wang, Zheng Zhang, Zheng-Jun Zha, Meng Wang ·

In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accurately, AS-LRC seamlessly integrates an adaptive weighting based block-diagonal structure-constrained low-rank representation and the group sparse salient feature extraction into a unified framework. Specifically, AS-LRC performs the latent decomposition of given data into a low-rank reconstruction by a block-diagonal codes matrix, a group sparse locality-adaptive salient feature part and a sparse error part. To enforce the block-diagonal structures adaptive to different real datasets for the low-rank recovery, AS-LRC clearly computes an auto-weighting matrix based on the locality-adaptive features and multiplies by the low-rank coefficients for direct minimization at the same time. This encourages the codes to be block-diagonal and can avoid the tricky issue of choosing optimal neighborhood size or kernel width for the weight assignment, suffered in most local geometrical structures-preserving low-rank coding methods. In addition, our AS-LRC selects the L2,1-norm on the projection for extracting group sparse features rather than learning low-rank features by Nuclear-norm regularization, which can make learnt features robust to noise and outliers in samples, and can also make the feature coding process efficient. Extensive visualizations and numerical results demonstrate the effectiveness of our AS-LRC for image representation and recovery.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here